Optimization in multi-task learning (MTL) is more challenging than single-task learning (STL), as the gradient from different tasks can be contradictory. When tasks are related, it can be beneficial to share some parameters among them (cooperation). However, some tasks require additional parameters with expertise in a specific type of data or discrimination (specialization). To address the MTL challenge, we propose Mod-Squad, a new model that is Modularized into groups of experts (a 'Squad'). This structure allows us to formalize cooperation and specialization as the process of matching experts and tasks. We optimize this matching process during the training of a single model. Specifically, we incorporate mixture of experts (MoE) layers into a transformer model, with a new loss that incorporates the mutual dependence between tasks and experts. As a result, only a small set of experts are activated for each task. This prevents the sharing of the entire backbone model between all tasks, which strengthens the model, especially when the training set size and the number of tasks scale up. More interestingly, for each task, we can extract the small set of experts as a standalone model that maintains the same performance as the large model. Extensive experiments on the Taskonomy dataset with 13 vision tasks and the PASCAL-Context dataset with 5 vision tasks show the superiority of our approach.
translated by 谷歌翻译
多任务学习(MTL)通过在任务之间共享参数共同学习一组任务。这是降低存储成本的一种有希望的方法,同时提高许多计算机视觉任务的任务准确性。 MTL的有效采用面临两个主要挑战。第一个挑战是确定在任务中共享哪些参数,以优化内存效率和任务准确性。第二个挑战是在不需要耗时的手动重新实现和重要的域专业知识的情况下自动将MTL算法应用于任意CNN主链。本文通过开发第一个编程框架AutoMTL来应对挑战,该框架自动化有效的MTL模型开发为视觉任务。 AUTOMTL作为输入作为任意的骨干卷积神经网络(CNN)以及一组学习的任务,并自动生成一个多任务模型,该模型同时实现了高精度和较小的记忆足迹。在三个流行的MTL基准测试(CityScapes,NYUV2,Tiny-Taskonomy)上进行的实验证明了AutoMTL对最先进方法的有效性以及在CNN跨CNN的AutoMTL的普遍性。 AutOmtl是开源的,可在https://github.com/zhanglijun95/automtl上找到。
translated by 谷歌翻译
尽管最近的密集预测问题的多任务学习的进步,但大多数方法都依赖于昂贵的标记数据集。在本文中,我们介绍了一个标签有效的方法,并在部分注释的数据上关注多密集预测任务,我们称之为多任务部分监督学习。我们提出了一种多任务培训程序,该程序成功利用任务关系在数据部分注释时监督其多任务学习。特别地,我们学会将每个任务对映射到联合成对任务空间,这使得通过在任务对上的另一个网络通过另一个网络以计算有效的方式共享信息,并通过保留高级信息来避免学习琐碎的交叉任务关系关于输入图像。我们严格证明,我们的提出方法有效利用了未标记的任务的图像,并且在三个标准基准测试中优于现有的半监督学习方法和相关方法。
translated by 谷歌翻译
专家(MOE)的混合物能够有效地扩展视觉变压器。但是,它需要禁止计算资源来训练大型MOE变压器。在本文中,我们提出了专家的残留混合物(RMOE),这是在下游任务(例如分割和检测)上针对MOE视觉变压器的有效训练管道。 RMOE通过上限的MOE培训获得了可比的结果,而仅引入较小的额外培训成本,而不是较低的非MOE训练管道。效率得到了我们的关键观察的支持:MOE变压器的权重可以纳入无独立的核心和输入依赖性残差。与重量核心相比,可以通过更少的计算资源(例如,在下游数据上进行填充)进行有效训练重量。我们表明,与当前的MOE培训管道相比,我们获得了可比的结果,同时节省了30%以上的培训成本。与最先进的非MOE变压器(例如SWIN-T / CVT-13 / SWIN-L)相比,我们在ADE20K分割方面获得+1.1 / 0.9 / 1.0 MIOU的增益,+1.4 / 1.6 / 0.6 / 0.6 AP获得MS-Coco对象检测任务,额外培训成本不到3%。
translated by 谷歌翻译
及时调整是以参数有效的方式对预训练的预训练语言模型的新范式。在这里,我们探讨了超级核武器的使用来产生超预价:我们提出了HyperPrompt,这是一种用于迅速基于变形金刚自我注意的任务调节的新型体系结构。超预要是通过超网络通过一代人来学习的端到端。 HyperPrompt允许网络学习特定于任务的功能地图,其中超预告是要参与的查询的任务全局记忆,同时启用了任务之间的灵活信息共享。我们表明,HyperPrompt与强大的多任务学习基线具有竞争力,其额外的任务条件参数的$ 0.14 \%$ $ \%,实现了出色的参数和计算效率。通过广泛的经验实验,我们证明,超级启示可以比强大的T5多任务学习基准和参数效率高效的适配器变体获得卓越的性能,包括及时调整和SuplyFormer ++在许多模型尺寸的自然语言理解胶水和SuperGrue的基准上。
translated by 谷歌翻译
以前的多任务密集预测研究开发了复杂的管道,例如在多个阶段进行多模式蒸馏或为每个任务寻找任务关系上下文。这些方法以外的核心洞察力是最大程度地利用每个任务之间的相互作用。受到最近基于查询的变压器的启发,我们提出了一条更简单的管道,称为Multi-Querti-Transformer(MQTRANSFORMER),该管道配备了来自不同任务的多个查询,以促进多个任务之间的推理并简化交叉任务管道。我们没有在不同任务之间建模每个像素上下文的密集上下文,而是寻求特定于任务的代理,以通过每个查询编码与任务相关的上下文进行编码的多个查询执行交叉任务推理。 MQTRANSFORMER由三个关键组件组成:共享编码器,交叉任务注意和共享解码器。我们首先将每个任务与任务相关且具有比例意识的查询对每个任务进行建模,然后将功能提取器的图像功能输出和与任务相关的查询功能都馈入共享编码器,从而从图像功能中编码查询功能。其次,我们设计了一个交叉任务注意模块,以从两个角度来推理多个任务和特征量表之间的依赖项,包括相同尺度的不同任务和同一任务的不同尺度。然后,我们使用共享解码器逐渐使用来自不同任务的合理查询功能来逐步完善图像功能。对两个密集的预测数据集(NYUD-V2和Pascal-Context)的广泛实验结果表明,该方法是一种有效的方法,并实现了最新结果。
translated by 谷歌翻译
在混合完成的多任务,多域和多模式数据上进行预训练仍然是视力感知预训练的开放挑战。在本文中,我们提出了GPPF,这是一个普遍的感知预训练框架,预先培训任务级的动态网络,该网络是由在标签的多任务和多域数据集上的各层知识“乐高”组成的。通过检查人类在复杂环境中学习的先天能力,我们识别并将三个关键要素转移到深网上:(1)同时暴露于每个批次中的各种交叉任务和跨域信息。 (2)由知识共享驱动的单独的乐高单元中的分区知识存储。 (3)用于训练和下游任务的乐高单元子集的稀疏激活。值得注意的是,由于其在输入形状,损失功能,输出格式,数据分布等方面的差异,不同视觉任务的联合培训是不平凡的。因此,我们创新地开发了插件的多任务培训算法,该培训算法是支持单个迭代多个任务(SIMT)同时培训。 Simt用大型多任务多任务数据集为预训练的基础奠定了基础,并且被证明对于我们的GPPF实验中的稳定培训至关重要。令人兴奋的是,详尽的实验表明,我们的GPPF-R50型号在GPPF-15M中的8个预训练预培训任务的强大基线上取得了显着改善,并在22个下游任务中收获了一系列SOTA,并具有相似的计算预算。我们还验证了GPPF对SOTA视觉变压器的概括能力,并具有一致的改进。这些可靠的实验结果充分证明了我们新颖的GPPF框架提供的有效的知识学习,存储,共享和转移。
translated by 谷歌翻译
We propose a novel multi-task learning architecture, which allows learning of task-specific feature-level attention. Our design, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with a soft-attention module for each task. These modules allow for learning of taskspecific features from the global features, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be trained end-to-end and can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. We evaluate our approach on a variety of datasets, across both image-toimage predictions and image classification tasks. We show that our architecture is state-of-the-art in multi-task learning compared to existing methods, and is also less sensitive to various weighting schemes in the multi-task loss function. Code is available at https://github.com/ lorenmt/mtan.
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
稀疏的专家模型是一个三十年来的概念,作为深度学习中流行的建筑。这类体系结构包括专家的混合物,交换变压器,路由网络,基础层等,所有这些都以一个统一的想法,即每个示例都由参数的一个子集进行。通过这样做,稀疏度将参数计数与每个示例的计算分解,从而允许使用极大但有效的模型。最终的模型显示了各种领域的显着改善,例如自然语言处理,计算机视觉和语音识别。我们回顾了稀疏专家模型的概念,提供了对常见算法的基本描述,将深度学习时代的进步进行上下文化,并通过突出未来工作的领域来结束。
translated by 谷歌翻译
Training large, deep neural networks to convergence can be prohibitively expensive. As a result, often only a small selection of popular, dense models are reused across different contexts and tasks. Increasingly, sparsely activated models, which seek to decouple model size from computation costs, are becoming an attractive alternative to dense models. Although more efficient in terms of quality and computation cost, sparse models remain data-hungry and costly to train from scratch in the large scale regime. In this work, we propose sparse upcycling -- a simple way to reuse sunk training costs by initializing a sparsely activated Mixture-of-Experts model from a dense checkpoint. We show that sparsely upcycled T5 Base, Large, and XL language models and Vision Transformer Base and Large models, respectively, significantly outperform their dense counterparts on SuperGLUE and ImageNet, using only ~50% of the initial dense pretraining sunk cost. The upcycled models also outperform sparse models trained from scratch on 100% of the initial dense pretraining computation budget.
translated by 谷歌翻译
在本文中,我们通过利用视觉数据中的空间稀疏性提出了一种新的模型加速方法。我们观察到,视觉变压器中的最终预测仅基于最有用的令牌的子集,这足以使图像识别。基于此观察,我们提出了一个动态的令牌稀疏框架,以根据加速视觉变压器的输入逐渐和动态地修剪冗余令牌。具体而言,我们设计了一个轻量级预测模块,以估计给定当前功能的每个令牌的重要性得分。该模块被添加到不同的层中以层次修剪冗余令牌。尽管该框架的启发是我们观察到视觉变压器中稀疏注意力的启发,但我们发现自适应和不对称计算的想法可能是加速各种体系结构的一般解决方案。我们将我们的方法扩展到包括CNN和分层视觉变压器在内的层次模型,以及更复杂的密集预测任务,这些任务需要通过制定更通用的动态空间稀疏框架,并具有渐进性的稀疏性和非对称性计算,用于不同空间位置。通过将轻质快速路径应用于少量的特征,并使用更具表现力的慢速路径到更重要的位置,我们可以维护特征地图的结构,同时大大减少整体计算。广泛的实验证明了我们框架对各种现代体系结构和不同视觉识别任务的有效性。我们的结果清楚地表明,动态空间稀疏为模型加速提供了一个新的,更有效的维度。代码可从https://github.com/raoyongming/dynamicvit获得
translated by 谷歌翻译
尽管模型压缩和多任务学习的流行程度,但由于参数空间中任务的挑战性纠缠,如何有效地压缩多任务模型的分析程度不太彻底。在本文中,我们提出了一种简单,有效且首先的多任务修剪和稀疏培训计划。我们通过解开重要性测量值并在执行参数修剪和选择时独立考虑每个任务。我们的实验结果表明,与流行的稀疏训练和修剪方法相比,各种配置和设置的性能都出色。除了压缩的有效性外,Disparse还为多任务学习社区提供了强大的工具。令人惊讶的是,尽管迪斯特尔斯(Disparse)实现了高模型的稀疏性,但在某些情况下,我们甚至观察到比某些专用的多任务学习方法更好的性能。我们分析了用拆卸生成的修剪口罩,并在训练开始之前就观察到了每个任务都标识的非常相似的稀疏网络体系结构。我们还观察到了一个“分水岭”层的存在,该层与任务相关性急剧下降,这意味着持续参数共享没有任何好处。我们的代码和模型将在以下网址提供:https://github.com/shi-labs/disparse-multitask-model-compression。
translated by 谷歌翻译
我们可以训练一个能够处理多个模态和数据集的单个变压器模型,同时分享几乎所有的学习参数?我们呈现Polyvit,一种培训的模型,在图像,音频和视频上接受了讲述这个问题。通过在单一的方式上培训不同的任务,我们能够提高每个任务的准确性,并在5个标准视频和音频分类数据集中实现最先进的结果。多种模式和任务上的共同训练Polyvit会导致一个更具参数效率的模型,并学习遍历多个域的表示。此外,我们展示了实施的共同培训和实用,因为我们不需要调整数据集的每个组合的超级参数,但可以简单地调整来自标准的单一任务培训。
translated by 谷歌翻译
多任务学习最近已成为对复杂场景的全面理解的有前途的解决方案。不仅具有适当设计的记忆效率,多任务模型都可以跨任务交换互补信号。在这项工作中,我们共同解决了2D语义分割,以及两个与几何相关的任务,即密集的深度,表面正常估计以及边缘估计,显示了它们对室内和室外数据集的好处。我们提出了一种新颖的多任务学习体系结构,该体系结构通过相关引导的注意力和自我注意力来利用配对的交叉任务交换,以增强所有任务的平均表示学习。我们考虑了三个多任务设置的广泛实验,与合成基准和真实基准中的竞争基准相比,我们的提案的好处。我们还将方法扩展到新型的多任务无监督域的适应设置。我们的代码可在https://github.com/cv-rits/densemtl上找到。
translated by 谷歌翻译
在深度学习中,模型通常重用所有输入的相同参数。专家的混合(MOE)违反了这一点,而是为每个传入示例选择不同的参数。结果是一个稀疏激活的模型 - 具有残酷数量的参数 - 但恒定的计算成本。然而,尽管MOE取得了一些显着的成功,但复杂性,沟通成本和培训不稳定的阻碍了广泛的采用 - 我们使用Switch Transformer解决了这些领域。我们简化了MOE路由算法和设计直观的改进模型,以降低的通信和计算成本。我们提出的培训技术有助于纠缠不稳定,我们表明稀疏模型可能首次以较低的精度(BFLOAT16)格式进行培训。我们设计了基于T5基数和T5总数的模型,以使用相同的计算资源获得高达7倍的训练速度。这些改进扩展到多语言设置,我们在所有101种语言中衡量对MT5基本版本的收益。最后,我们通过在“巨大的清洁爬行语料库”上预先培训高达数万亿个参数模型,并在T5-XXL模型上实现4倍的速度,从而提高了语言模型的当前规模。
translated by 谷歌翻译
近年来,由于许多应用中的良好性能,多任务学习(MTL)引起了很多关注。但是,许多现有的MTL模型不能保证其性能不会比每项任务的单一任务对应物更糟糕。虽然这些现象已经被一些作品经验识别,但很少的工作旨在处理所产生的问题,这在本文中正式定义为负分享。为了实现安全的多任务学习,在没有\ texit {否定共享}的情况下,我们提出了一个安全的多任务学习(SMTL)模型,它由所有任务,私人编码器,门和私有解码器共享的公共编码器组成。具体而言,每个任务都有私人编码器,门和私有解码器,其中门是学习如何将私人编码器和公共编码器组合到下游私有解码器。为了减少推理阶段期间的存储成本,提出了一种Lite版本的SMTL,以允许大门选择公共编码器或相应的私人编码器。此外,我们提出了一种SMT1的变体来放置所有任务的解码后的所有门。几个基准数据集的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
动态模型修剪是最近的方向,其允许不同的子网络中的部署过程中每个输入采样的推断。然而,当前的动态方法依赖于学习的连续通道通过诱导稀疏性损失通过正则化门控。这一提法介绍了平衡不同损失的复杂性(如任务的损失,正规化损失)。此外,基于正则化方法缺乏透明的折衷选择超参数,实现计算的预算。我们的贡献是双重的:1)分离任务和修剪培训。 2)简单的超参数选择,使训练前FLOPS减少估计。在神经科学的赫布理论的启发:“神经元一起火一起丝”,我们提出来预测基于其上一层的活化层口罩方法K过滤器。我们提出的问题,因为自监督二元分类问题。每个掩模预测模块被训练以预测,如果对数似然在当前层中的每个过滤器属于前k激活的过滤器。值k被动态地估计基于使用热图的质量的新颖标准每个输入。我们发现在几个神经结构,如VGG,RESNET和MobileNet上CIFAR和ImageNet数据集实验。在CIFAR,我们得出了类似的精度SOTA方法有15%和24%以上FLOPS减少。同样,在ImageNet,我们达到的精度低下降高达13%的改善FLOPS减少。
translated by 谷歌翻译
This work proposes Multi-task Meta Learning (MTML), integrating two learning paradigms Multi-Task Learning (MTL) and meta learning, to bring together the best of both worlds. In particular, it focuses simultaneous learning of multiple tasks, an element of MTL and promptly adapting to new tasks with fewer data, a quality of meta learning. It is important to highlight that we focus on heterogeneous tasks, which are of distinct kind, in contrast to typically considered homogeneous tasks (e.g., if all tasks are classification or if all tasks are regression tasks). The fundamental idea is to train a multi-task model, such that when an unseen task is introduced, it can learn in fewer steps whilst offering a performance at least as good as conventional single task learning on the new task or inclusion within the MTL. By conducting various experiments, we demonstrate this paradigm on two datasets and four tasks: NYU-v2 and the taskonomy dataset for which we perform semantic segmentation, depth estimation, surface normal estimation, and edge detection. MTML achieves state-of-the-art results for most of the tasks. Although semantic segmentation suffers quantitatively, our MTML method learns to identify segmentation classes absent in the pseudo labelled ground truth of the taskonomy dataset.
translated by 谷歌翻译