多发性硬化症(MS)是一种慢性神经炎症性疾病,多模态MRIS通常用于监测MS病变。许多自动MS病变细分模型已经开发并达到了人类水平的性能。但是,大多数已建立的方法都假定在训练过程中使用的MRI模式在测试过程中也可以使用,这在临床实践中不能保证。以前,已将称为模式辍学的训练策略应用于MS病变细分,以实现最先进的性能,而缺失了模态。在本文中,我们提出了一种称为ModDrop ++的新方法,以训练统一的网络适应于任意数量的输入MRI序列。 ModDrop ++以两种关键方式升级ModDrop的主要思想。首先,我们设计一个插件动态头,并采用过滤器缩放策略来提高网络的表现力。其次,我们设计了一种共同训练策略,以利用完全模态和缺失方式之间的主体内关系。具体而言,主体内共同训练策略旨在指导动态头部在同一主题的全模式数据和缺失模式数据之间生成相似的特征表示。我们使用两个公共MS数据集来显示ModDrop ++的优势。源代码和训练有素的模型可在https://github.com/han-liu/moddropplusplus上获得。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
Quantifying the perceptual similarity of two images is a long-standing problem in low-level computer vision. The natural image domain commonly relies on supervised learning, e.g., a pre-trained VGG, to obtain a latent representation. However, due to domain shift, pre-trained models from the natural image domain might not apply to other image domains, such as medical imaging. Notably, in medical imaging, evaluating the perceptual similarity is exclusively performed by specialists trained extensively in diverse medical fields. Thus, medical imaging remains devoid of task-specific, objective perceptual measures. This work answers the question: Is it necessary to rely on supervised learning to obtain an effective representation that could measure perceptual similarity, or is self-supervision sufficient? To understand whether recent contrastive self-supervised representation (CSR) may come to the rescue, we start with natural images and systematically evaluate CSR as a metric across numerous contemporary architectures and tasks and compare them with existing methods. We find that in the natural image domain, CSR behaves on par with the supervised one on several perceptual tests as a metric, and in the medical domain, CSR better quantifies perceptual similarity concerning the experts' ratings. We also demonstrate that CSR can significantly improve image quality in two image synthesis tasks. Finally, our extensive results suggest that perceptuality is an emergent property of CSR, which can be adapted to many image domains without requiring annotations.
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
在多模式分割领域中,可以考虑不同方式之间的相关性以改善分段结果。考虑到不同MR模型之间的相关性,在本文中,我们提出了一种由新型三关注融合引导的多模态分段网络。我们的网络包括与N个图像源,三关注融合块,双关注融合块和解码路径的N个独立于模型编码路径。独立编码路径的模型可以从n个模式捕获模态特征。考虑到从编码器中提取的所有功能都非常有用,我们建议使用基于双重的融合来重量沿模态和空间路径的特征,可以抑制更少的信息特征,并强调每个模态的有用的功能在不同的位置。由于不同模式之间存在强烈的相关性,基于双重关注融合块,我们提出了一种相关注意模块来形成三关注融合块。在相关性注意模块中,首先使用相关描述块来学习模态之间的相关性,然后基于相关性的约束来指导网络以学习对分段更相关的潜在相关特征。最后,通过解码器投影所获得的融合特征表示以获得分段结果。我们对Brats 2018年脑肿瘤分割进行测试的实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
从磁共振成像(MRI)中进行精确的脑肿瘤分割,对于多模式图像的联合学习是可取的。但是,在临床实践中,并非总是有可能获得一组完整的MRI,而缺失模态的问题会导致现有的多模式分割方法中的严重性能降解。在这项工作中,我们提出了第一次尝试利用变压器进行多模式脑肿瘤分割的尝试,该脑肿瘤分割对任何可用模式的任何组合子集都是可靠的。具体而言,我们提出了一种新型的多模式医疗变压器(MMMFORMER),用于不完整的多模式学习,具有三个主要成分:混合模态特异性的编码器,该编码器在每种模式中桥接卷积编码器和一个局部和全局上下文模型的模式内变压器;一种模式间变压器,用于建立和对齐模态跨模态的远程相关性,以对应于肿瘤区域的全局语义。一个解码器,与模态不变特征进行渐进的上采样和融合,以生成可靠的分割。此外,在编码器和解码器中都引入了辅助正规化器,以进一步增强模型对不完整方式的鲁棒性。我们对公共批评的大量实验$ 2018 $ $数据集用于脑肿瘤细分。结果表明,所提出的MMFORMER优于几乎所有不完整模态的亚群的多模式脑肿瘤分割的最新方法,尤其是在肿瘤分割的平均骰子中平均提高了19.07%,只有一种可用的模式。该代码可在https://github.com/yaozhang93/mmmenforer上找到。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
域间隙主要由可变的医学图像质量引起的构成,这是训练实验室中的分割模型与应用训练的模型在未见临床数据之间的路径上的主要障碍。为了解决这个问题,已经提出了域泛化方法,但是通常使用静态卷积,并且灵活性较低。在本文中,我们提出了一个基于域和内容自适应卷积(DCAC)的多源域概括模型,以分割不同模式的医学图像。具体而言,我们设计了域自适应卷积(DAC)模块和内容自适应卷积(CAC)模块,并将两者都合并到编码器解码器中。在DAC模块中,动态卷积头是根据输入的预测域代码进行的,以使我们的模型适应看不见的目标域。在CAC模块中,动态卷积头在全局图像特征上进行条件,以使我们的模型适应测试图像。我们针对基线的DCAC模型和针对前列腺分割,COVID-19病变分段和视频杯/视盘分段任务的四种最先进的域概括方法评估了DCAC模型。我们的结果不仅表明所提出的DCAC模型在每个分割任务上都优于所有竞争方法,而且还证明了DAC和CAC模块的有效性。代码可在\ url {https://git.io/dcac}上获得。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
尽管数据增强和转移学习有所进步,但卷积神经网络(CNNS)难以推广到看不见的域。在分割大脑扫描时,CNN对分辨率和对比度的变化非常敏感:即使在相同的MRI模式内,则性能可能会跨数据集减少。在这里,我们介绍了Synthseg,第一个分段CNN无关紧要对比和分辨率。 Synthseg培训,用从分段上的生成模型采样的合成数据培训。至关重要,我们采用域随机化策略,我们完全随机开启了合成培训数据的对比度和解决。因此,Synthseg可以在没有再培训或微调的情况下对任何目标结构域进行真实扫描,这是首次分析大量的异构临床数据。因为Synthseg仅需要进行培训(无图像),所以它可以从通过不同群体的对象(例如,老化和患病)的自动化方法获得的标签中学习,从而实现广泛的形态变异性的鲁棒性。我们展示了Synthseg在六种方式的5,300扫描和十项决议中,与监督CNN,最先进的域适应和贝叶斯分割相比,它表现出无与伦比的泛化。最后,我们通过将其施加到心脏MRI和CT分割来证明SyntheeG的恒定性。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
多模式的医学图像完成已广泛应用,以减轻许多多模式诊断任务中缺失的模式问题。但是,对于大多数现有的合成方法,它们缺失模式的推断可能会崩溃为确定性映射,从而忽略了跨模式关系中固有的不确定性。在这里,我们提出了统一的多模式条件分数的生成模型(UMM-CSGM),以利用基于得分的生成模型(SGM)在建模和随机采样目标概率分布中,并进一步将SGM扩展到交叉模式统一框架中各种缺失模式配置的条件合成。具体而言,UMM-CSGM采用一种新型的多中心条件分数网络(MM-CSN),通过在完整的模态空间中的条件扩散和反向产生来学习一组综合的跨模式条件分布。通过这种方式,可以通过所有可用信息来准确地制定生成过程,并可以符合单个网络中缺少模式的所有可能配置。 BRATS19数据集的实验表明,UMM-CSGM可以更可靠地合成肿瘤诱导的任何缺失方式的肿瘤诱导病变中的异质增强和不规则面积。
translated by 谷歌翻译
检测新的多发性硬化症(MS)病变是该疾病进化的重要标志。基于学习的方法的适用性可以有效地自动化此任务。然而,缺乏带有新型病变的注释纵向数据是训练健壮和概括模型的限制因素。在这项工作中,我们描述了一条基于学习的管道,该管道解决了检测和细分新MS病变的挑战性任务。首先,我们建议使用单个时间点对在分割任务进行训练的模型中使用转移学习。因此,我们从更轻松的任务中利用知识,并为此提供更多注释的数据集。其次,我们提出了一种数据综合策略,以使用单个时间点扫描生成新的纵向时间点。通过这种方式,我们将检测模型预算到大型合成注释数据集上。最后,我们使用旨在模拟MRI中数据多样性的数据实践技术。通过这样做,我们增加了可用的小注释纵向数据集的大小。我们的消融研究表明,每个贡献都会提高分割精度。使用拟议的管道,我们获得了MSSEG2 MICCAI挑战中新的MS病变的分割和检测的最佳分数。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译