多模式的医学图像完成已广泛应用,以减轻许多多模式诊断任务中缺失的模式问题。但是,对于大多数现有的合成方法,它们缺失模式的推断可能会崩溃为确定性映射,从而忽略了跨模式关系中固有的不确定性。在这里,我们提出了统一的多模式条件分数的生成模型(UMM-CSGM),以利用基于得分的生成模型(SGM)在建模和随机采样目标概率分布中,并进一步将SGM扩展到交叉模式统一框架中各种缺失模式配置的条件合成。具体而言,UMM-CSGM采用一种新型的多中心条件分数网络(MM-CSN),通过在完整的模态空间中的条件扩散和反向产生来学习一组综合的跨模式条件分布。通过这种方式,可以通过所有可用信息来准确地制定生成过程,并可以符合单个网络中缺少模式的所有可能配置。 BRATS19数据集的实验表明,UMM-CSGM可以更可靠地合成肿瘤诱导的任何缺失方式的肿瘤诱导病变中的异质增强和不规则面积。
translated by 谷歌翻译
通过源至目标模态丢失图像的插图可以促进医学成像中的下游任务。合成目标图像的普遍方法涉及通过生成对抗网络(GAN)的单发映射。然而,隐式表征图像分布的GAN模型可能会受到样本保真度和多样性的有限。在这里,我们提出了一种基于对抗扩散建模Syndiff的新方法,以提高医学图像合成的可靠性。为了捕获图像分布的直接相关性,Syndiff利用条件扩散过程逐步将噪声和源图像映射到目标图像上。对于推断期间的快速准确图像采样,大扩散步骤与反向扩散方向的对抗投影结合在一起。为了对未配对的数据集进行培训,设计了一个循环一致的体系结构,并使用两个耦合的扩散过程,以合成给定源的目标和给定的目标。报告了有关联合竞争性GAN和扩散模型在多对比度MRI和MRI-CT翻译中的效用的广泛评估。我们的示威表明,Syndiff在定性和定量上都可以针对竞争基线提供出色的性能。
translated by 谷歌翻译
MRI和CT是最广泛使用的医学成像方式。通常有必要获取用于诊断和治疗的多模式图像,例如放射疗法计划。但是,多模式成像不仅昂贵,而且还引入了MRI和CT图像之间的错位。为了应对这一挑战,计算转换是MRI和CT图像之间的可行方法,尤其是从MRI到CT图像。在本文中,我们建议在这种情况下使用一个名为“扩散和得分匹配模型”的新兴深度学习框架。具体而言,我们适应了deno的扩散概率和得分匹配模型,使用四种不同的抽样策略,并将其性能指标与使用卷积神经网络和生成的对抗网络模型进行比较。我们的结果表明,扩散和得分匹配模型比CNN和GAN模型产生更好的合成CT图像。此外,我们使用蒙特卡洛方法研究了与扩散和得分匹配网络相关的不确定性,并通过平均其蒙特卡洛输出来改善结果。我们的研究表明,扩散和得分匹配模型具有强大的功能,可以生成以使用互补成像方式获得的图像来调节的高质量图像,在分析上进行了严格的解释性,并具有清晰的解释性,并且具有CNNS和GAN的高度竞争,以进行图像合成。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
在我们的全面实验和评估中,我们表明可以生成多个对比度(甚至是合成的),并使用合成生成的图像来训练图像分割引擎。我们显示出在描绘肌肉,脂肪,骨骼和骨髓的实际多对比度MRI扫描测试的有希望的分割结果,这些结果均接受了合成图像的训练。基于合成图像训练,我们的分割结果分别高达93.91 \%,94.11 \%,91.63 \%,95.33 \%,分别用于肌肉,脂肪,骨骼,骨骼和骨髓描绘。结果与使用真实图像进行分割训练时获得的结果没有显着差异:94.68 \%,94.67 \%,95.91 \%和96.82 \%。
translated by 谷歌翻译
使用多模式磁共振成像(MRI)对于精确的脑肿瘤细分是必需的。主要问题是,并非所有类型的MRI都始终可以在临床考试中提供。基于同一患者的先生模式之间存在强烈相关性,在这项工作中,我们提出了一种缺少一个或多种方式的脑肿瘤分割网络。所提出的网络由三个子网组成:特征增强的生成器,相关约束块和分割网络。特征增强的生成器利用可用模态来生成表示缺少模态的3D特征增强图像。相关性约束块可以利用模态之间的多源相关性,并且还限制了发电机,以合成特征增强的模态,该特征增强的模态必须具有与可用模式具有相干相关性的特征增强的模态。分段网络是基于多编码器的U-Net,以实现最终的脑肿瘤分割。所提出的方法在Brats 2018数据集上进行评估。实验结果表明,拟议方法的有效性分别在全肿瘤,肿瘤核心和增强肿瘤上实现了82.9,74.9和59.1的平均骰子得分,并且优于3.5%,17%和18.2的最佳方法%。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
多模式先验下的图像合成是一项有用且具有挑战性的任务,近年来受到了越来越多的关注。使用生成模型来完成此任务的一个主要挑战是缺乏包含所有模式(即先验)和相应输出的配对数据。在最近的工作中,对各种自动编码器(VAE)模型进行了弱监督的培训,以应对这一挑战。由于VAE的生成能力通常受到限制,因此该方法很难合成属于复杂分布的图像。为此,我们提出了一个基于脱氧扩散概率模型的解决方案,以在多模型先验下合成图像。基于以下事实:扩散模型中的每个时间步中的分布都是高斯,在这项工作中,我们表明对生成图像的封闭形式表达式对应于给定的模态。所提出的解决方案不需要所有模式的明确重试,并且可以根据不同的约束来利用单个模式的输出来生成逼真的图像。我们对两个现实世界数据集进行研究,以证明我们的方法的有效性
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
完全排列和配对的多模式神经成像数据的存在证明了其在诊断脑疾病中的有效性。但是,收集完整的一组良好的配对数据是不切实际的,因为实际困难可能包括高成本,长期获取,图像腐败和隐私问题。以前,未配对的神经影像数据(称为泥)通常被视为嘈杂的标签。但是,这种基于嘈杂的标签的方法在严重发生扭曲的数据时无法完成。例如,旋转角度不同。在本文中,我们提出了一种新的联邦自制学习(FEDMED),以用于脑形象合成。制定了仿射变换损失(ATL),以利用严重扭曲的图像,而无需违反医院的隐私立法。然后,我们引入了一种新的数据增强程序,以进行自我监督训练,并将其送入三个辅助头,即辅助旋转,辅助翻译和辅助缩放头。所提出的方法证明了在严重错误和未配对的数据设置下,我们合成结果的质量的高级性能,并且比其他基于GAN的算法更好。提出的方法还减少了对可变形注册的需求,同时鼓励利用未对准和未配对的数据。与其他最先进的方法相比,实验结果验证了我们学习范式的出色表现。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译
深度MRI重建通常是使用有条件的模型进行的,该模型将其映射到完全采样的数据作为输出中。有条件的模型在加速成像运算符的知识下执行了脱氧,因此在操作员的域转移下,它们概括了很差。无条件模型是一种强大的替代方法,相反,它可以学习生成图像先验,以提高针对领域转移的可靠性。鉴于它们的高度代表性多样性和样本质量,最近的扩散模型特别有希望。然而,事先通过静态图像进行预测会导致次优性能。在这里,我们提出了一种基于适应性扩散的新型MRI重建Adadiff。为了启用有效的图像采样,引入了一个可以使用大扩散步骤的对抗映射器。使用受过训练的先验进行两阶段的重建:一个快速扩散阶段,产生初始重建阶段,以及一个适应阶段,其中更新扩散先验以最大程度地减少获得的K空间数据的重建损失。关于多对比的大脑MRI的演示清楚地表明,Adadiff在跨域任务中的竞争模型以及域内任务中的卓越或PAR性能方面取得了出色的性能。
translated by 谷歌翻译
随着信息中的各种方式存在于现实世界中的各种方式,多式联信息之间的有效互动和融合在计算机视觉和深度学习研究中的多模式数据的创造和感知中起着关键作用。通过卓越的功率,在多式联运信息中建模互动,多式联运图像合成和编辑近年来已成为一个热门研究主题。与传统的视觉指导不同,提供明确的线索,多式联路指南在图像合成和编辑方面提供直观和灵活的手段。另一方面,该领域也面临着具有固有的模态差距的特征的几个挑战,高分辨率图像的合成,忠实的评估度量等。在本调查中,我们全面地阐述了最近多式联运图像综合的进展根据数据模型和模型架构编辑和制定分类。我们从图像合成和编辑中的不同类型的引导方式开始介绍。然后,我们描述了多模式图像综合和编辑方法,其具有详细的框架,包括生成的对抗网络(GAN),GaN反转,变压器和其他方法,例如NERF和扩散模型。其次是在多模式图像合成和编辑中广泛采用的基准数据集和相应的评估度量的综合描述,以及分析各个优点和限制的不同合成方法的详细比较。最后,我们为目前的研究挑战和未来的研究方向提供了深入了解。与本调查相关的项目可在HTTPS://github.com/fnzhan/mise上获得
translated by 谷歌翻译
该技术报告对现有的深度学习(DL)方法进行了比较分析,用于脑肿瘤分割,而MRI模式缺失。评估的方法包括对抗性共同训练网络(ACN)以及MMGAN和DEEPMEDIC的组合。MMGAN的更稳定,易于使用的版本也在GitHub存储库中开源。使用BRATS2018数据集,这项工作表明,最先进的ACN表现更好,尤其是在缺少T1C时。当仅缺少一种MRI模式时,MMGAN和DEEPMEDIC的简单组合也显示出强大的潜力。此外,这项工作还与未来的研究方向进行了讨论,以进行脑肿瘤分割,而MRI模式缺失。
translated by 谷歌翻译
产生相同解剖结构的多对比度/模态MRI丰富了诊断信息,但由于数据获取时间过多而在实践中受到限制。在本文中,我们提出了一种新的深入学习模型,用于使用几种源模态的不完整的k空间数据作为输入,用于联合重建和合成多模式MRI。我们模型的输出包括源模式的重建图像和目标模式中合成的高质量图像。我们提出的模型被公式化为一个变异问题,该问题利用了几个可学习的特定特征提取器和多模式合成模块。我们提出了一种可学习的优化算法来求解该模型,该算法可以使用多模式MRI数据训练其参数的多相网络。此外,采用了一个二线优化框架进行鲁棒参数训练。我们使用广泛的数值实验证明了方法的有效性。
translated by 谷歌翻译