We present a method for simultaneously localizing multiple sound sources within a visual scene. This task requires a model to both group a sound mixture into individual sources, and to associate them with a visual signal. Our method jointly solves both tasks at once, using a formulation inspired by the contrastive random walk of Jabri et al. We create a graph in which images and separated sounds correspond to nodes, and train a random walker to transition between nodes from different modalities with high return probability. The transition probabilities for this walk are determined by an audio-visual similarity metric that is learned by our model. We show through experiments with musical instruments and human speech that our model can successfully localize multiple sounds, outperforming other self-supervised methods. Project site: https://hxixixh.github.io/mix-and-localize
translated by 谷歌翻译
在我们的日常生活中,视听场景是普遍存在的。对于人类来说是常见的常见地定位不同的探测物体,但是对于在没有类别注释的情况下实现类感知的声音对象本地化的机器非常具有挑战性,即,本地化声音对象并识别其类别。为了解决这个问题,我们提出了一个两阶段的逐步学习框架,以仅使用音频和视觉之间的对应方式本地化和识别复杂的视听方案中的探测对象。首先,我们建议通过单一源案例中通过粗粒化的视听对应来确定声音区域。然后,声音区域中的视觉功能被利用为候选对象表示,以建立类别表示对象字典,用于表达视觉字符提取。我们在鸡尾酒会方案中生成类感知对象本地化映射,并使用视听对应来抑制静音区域来引用此字典。最后,我们使用类别级视听一致性作为达到细粒度音频和探测物体分布对齐的监督。关于现实和综合视频的实验表明,我们的模型在本地化和识别物体方面是优越的,以及滤除静音。我们还将学习的视听网络转移到无监督的对象检测任务中,获得合理的性能。
translated by 谷歌翻译
The thud of a bouncing ball, the onset of speech as lips open -when visual and audio events occur together, it suggests that there might be a common, underlying event that produced both signals. In this paper, we argue that the visual and audio components of a video signal should be modeled jointly using a fused multisensory representation. We propose to learn such a representation in a self-supervised way, by training a neural network to predict whether video frames and audio are temporally aligned. We use this learned representation for three applications: (a) sound source localization, i.e. visualizing the source of sound in a video; (b) audio-visual action recognition; and (c) on/offscreen audio source separation, e.g. removing the off-screen translator's voice from a foreign official's speech. Code, models, and video results are available on our webpage: http://andrewowens.com/multisensory.
translated by 谷歌翻译
我们在没有监督的情况下解决了学习对象探测器的问题。与弱监督的对象检测不同,我们不假设图像级类标签。取而代之的是,我们使用音频组件来“教”对象检测器,从视听数据中提取监督信号。尽管此问题与声音源本地化有关,但它更难,因为检测器必须按类型对对象进行分类,列举对象的每个实例,并且即使对象保持沉默,也可以这样做。我们通过首先设计一个自制的框架来解决这个问题,该框架具有一个对比目标,该目标共同学会了分类和本地化对象。然后,在不使用任何监督的情况下,我们只需使用这些自我监督的标签和盒子来训练基于图像的对象检测器。因此,对于对象检测和声音源定位的任务,我们优于先前的无监督和弱监督的检测器。我们还表明,我们可以将该探测器与每个伪级标签的标签保持一致,并展示我们的方法如何学习检测超出仪器(例如飞机和猫)的通用对象。
translated by 谷歌翻译
Current audio-visual separation methods share a standard architecture design where an audio encoder-decoder network is fused with visual encoding features at the encoder bottleneck. This design confounds the learning of multi-modal feature encoding with robust sound decoding for audio separation. To generalize to a new instrument: one must finetune the entire visual and audio network for all musical instruments. We re-formulate visual-sound separation task and propose Instrument as Query (iQuery) with a flexible query expansion mechanism. Our approach ensures cross-modal consistency and cross-instrument disentanglement. We utilize "visually named" queries to initiate the learning of audio queries and use cross-modal attention to remove potential sound source interference at the estimated waveforms. To generalize to a new instrument or event class, drawing inspiration from the text-prompt design, we insert an additional query as an audio prompt while freezing the attention mechanism. Experimental results on three benchmarks demonstrate that our iQuery improves audio-visual sound source separation performance.
translated by 谷歌翻译
我们介绍了Audioscopev2,这是一种最先进的通用音频视频在屏幕上的声音分离系统,该系统能够通过观看野外视频来学习将声音与屏幕上的对象相关联。我们确定了先前关于视听屏幕上的声音分离的几个局限性,包括对时空注意力的粗略分辨率,音频分离模型的收敛性不佳,培训和评估数据的差异有限,以及未能说明贸易。在保存屏幕声音和抑制屏幕外声音之间的关闭。我们为所有这些问题提供解决方案。我们提出的跨模式和自我发场网络体系结构随着时间的推移以精细的分辨率捕获了视听依赖性,我们还提出了有效的可分离变体,这些变体能够扩展到更长的视频而不牺牲太多性能。我们还发现,仅在音频上进行预训练模型可大大改善结果。为了进行培训和评估,我们从大型野外视频数据库(YFCC100M)中收集了新的屏幕上的人类注释。这个新数据集更加多样化和具有挑战性。最后,我们提出了一个校准过程,该过程允许对屏幕重建与屏幕外抑制进行精确调整,从而大大简化了具有不同操作点的模型之间的性能。总体而言,我们的实验结果表明,在屏幕上的分离性能在更一般条件下的屏幕分离性能的改善要比以前具有最小的额外计算复杂性的方法更为普遍。
translated by 谷歌翻译
我们建议探索一个称为视听分割(AVS)的新问题,其中的目标是输出在图像帧时产生声音的对象的像素级映射。为了促进这项研究,我们构建了第一个视频分割基准(AVSBENCH),为声音视频中的声音对象提供像素的注释。使用此基准测试了两个设置:1)具有单个声源的半监督音频分割和2)完全监督的音频段段,并带有多个声源。为了解决AVS问题,我们提出了一种新颖的方法,该方法使用时间像素的视听相互作用模块注入音频语义作为视觉分割过程的指导。我们还设计正规化损失,以鼓励训练期间的视听映射。 AVSBench上的定量和定性实验将我们的方法与相关任务中的几种现有方法进行了比较,这表明所提出的方法有望在音频和像素视觉语义之间建立桥梁。代码可从https://github.com/opennlplab/avsbench获得。
translated by 谷歌翻译
在视觉和声音内利用时间同步和关联是朝向探测物体的强大定位的重要一步。为此,我们提出了一个节省空间内存网络,用于探测视频中的对象本地化。它可以同时通过音频和视觉方式的单模和跨模型表示来同时学习时空关注。我们在定量和定性地展示和分析了在本地化视听物体中结合时空学习的有效性。我们展示了我们的方法通过各种复杂的视听场景概括,最近最先进的方法概括。
translated by 谷歌翻译
我们提出了一个简单而有效的自我监督框架,用于视听表示学习,以将声源定位在视频中。为了了解什么使能够学习有用的表示形式,我们系统地研究了数据增强的效果,并揭示(1)数据增强的组成起着关键作用,{\ em I.E.}〜明确鼓励音频表征是不变的各种转换〜({\ em转换不变性}); (2)强制执行几何一致性基本上提高了学会表示的质量,{\ em,即}〜所检测到的声源应遵循在输入视频帧〜({\ em em transive equivarianciance})上应用的相同转换。广泛的实验表明,我们的模型在两个声音定位基准上的先前方法(即Flickr-soundnet和vgg-sounds)都显着优于先前的方法。此外,我们还评估了音频检索和跨模式检索任务。在这两种情况下,我们的自我监管模型都表现出了出色的检索性能,甚至在音频检索中具有监督方法竞争。这揭示了所提出的框架学会了强大的多模式表示,这些表示有益于声音定位和对进一步应用的概括。 \ textIt {所有代码都将可用}。
translated by 谷歌翻译
The goal of this work is to localize sound sources in visual scenes with a self-supervised approach. Contrastive learning in the context of sound source localization leverages the natural correspondence between audio and visual signals where the audio-visual pairs from the same source are assumed as positive, while randomly selected pairs are negatives. However, this approach brings in noisy correspondences; for example, positive audio and visual pair signals that may be unrelated to each other, or negative pairs that may contain semantically similar samples to the positive one. Our key contribution in this work is to show that using a less strict decision boundary in contrastive learning can alleviate the effect of noisy correspondences in sound source localization. We propose a simple yet effective approach by slightly modifying the contrastive loss with a negative margin. Extensive experimental results show that our approach gives on-par or better performance than the state-of-the-art methods. Furthermore, we demonstrate that the introduction of a negative margin to existing methods results in a consistent improvement in performance.
translated by 谷歌翻译
主动演讲者的检测和语音增强已成为视听场景中越来越有吸引力的主题。根据它们各自的特征,独立设计的体系结构方案已被广泛用于与每个任务的对应。这可能导致模型特定于任务所学的表示形式,并且不可避免地会导致基于多模式建模的功能缺乏概括能力。最近的研究表明,建立听觉和视觉流之间的跨模式关系是针对视听多任务学习挑战的有前途的解决方案。因此,作为弥合视听任务中多模式关联的动机,提出了一个统一的框架,以通过在本研究中通过联合学习视听模型来实现目标扬声器的检测和语音增强。
translated by 谷歌翻译
视觉和听力是两种在人类交流和场景理解中起着至关重要的作用的感觉。为了模仿人类的感知能力,旨在开发从音频和视觉方式学习的计算方法的视听学习一直是一个蓬勃发展的领域。预计可以系统地组织和分析视听领域的研究的全面调查。从对视听认知基础的分析开始,我们介绍了几个关键发现,这些发现激发了我们的计算研究。然后,我们系统地回顾了最近的视听学习研究,并将其分为三类:视听,跨模式感知和视听合作。通过我们的分析,我们发现,跨语义,空间和时间支持上述研究的视听数据的一致性。为了重新审视视听学习领域的当前发展,我们进一步提出了关于视听场景理解的新观点,然后讨论和分析视听学习领域的可行未来方向。总体而言,这项调查从不同方面审查并展示了当前视听学习领域。我们希望它可以为研究人员提供对这一领域的更好理解。发布了包括不断更新的调查在内的网站:\ url {https://gewu-lab.github.io/audio-visual-learning/}。
translated by 谷歌翻译
Learning to localize the sound source in videos without explicit annotations is a novel area of audio-visual research. Existing work in this area focuses on creating attention maps to capture the correlation between the two modalities to localize the source of the sound. In a video, oftentimes, the objects exhibiting movement are the ones generating the sound. In this work, we capture this characteristic by modeling the optical flow in a video as a prior to better aid in localizing the sound source. We further demonstrate that the addition of flow-based attention substantially improves visual sound source localization. Finally, we benchmark our method on standard sound source localization datasets and achieve state-of-the-art performance on the Soundnet Flickr and VGG Sound Source datasets. Code: https://github.com/denfed/heartheflow.
translated by 谷歌翻译
在本文中,我们考虑了视听同步的问题应用于视频`in-wild'(即,超越语音的一般类)。作为一项新任务,我们识别并策划具有高视听相关性的测试集,即VGG-SOCK SYNC。我们比较了一些专门设计的基于变压器的架构变体,用于模拟任意长度的音频和视觉信号,同时显着降低训练期间的内存要求。我们进一步对策划数据集进行了深入的分析,并定义了开放域视听同步的评估度量。我们在标准唇读语音基准测试中应用我们的方法,LRS2和LRS3,在各个方面的消融。最后,我们在新的VGG-SOCKC SYNC视频数据集中设置了与超过160个不同类别的通用视听同步的第一个基准。在所有情况下,我们所提出的模型通过显着的保证金优于以前的最先进。
translated by 谷歌翻译
双耳音频提供具有沉浸式空间声音体验的人类听众,但大多数现有视频缺乏双耳录音。我们提出了一种音频空间化方法,它借鉴视频中的视觉信息,以将其单声道(单通道)音频转换为双耳音频。现有方法利用直接从视频帧提取的可视化功能,我们的方法明确地解除了视觉流中存在的几何线索以指导学习过程。特别是,我们开发了一种多任务框架,通过考虑底层室脉冲响应,从而为底层室的脉冲响应而学习几何感知功能,从声音源的位置,以及声音几何形状的一致性随着时间的推移。此外,我们介绍了一个新的大型视频数据集,具有逼真的双链条音频,用于真实世界扫描环境。在两个数据集上,我们展示了我们方法的功效,这实现了最先进的结果。
translated by 谷歌翻译
In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of crossmodal self-supervision from video. To this end, we design new network architectures that can be trained for cross-modal retrieval and localizing the sound source in an image, by using the AVC task. We make the following contributions: (i) show that audio and visual embeddings can be learnt that enable both within-mode (e.g. audio-to-audio) and between-mode retrieval; (ii) explore various architectures for the AVC task, including those for the visual stream that ingest a single image, or multiple images, or a single image and multi-frame optical flow; (iii) show that the semantic object that sounds within an image can be localized (using only the sound, no motion or flow information); and (iv) give a cautionary tale on how to avoid undesirable shortcuts in the data preparation.
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
从旋转天花板粉丝到滴答时钟,我们听到巧妙地变化的声音随着我们通过场景。我们询问这些环境声音是否传达有关3D场景结构的信息,如果是,它们是否提供了用于多模式模型的有用的学习信号。为学习这一点,我们从各种安静的室内场景中收集配对音频和RGB-D录音的数据集。然后,我们培训估计到附近墙壁的距离的模型,只有一个音频作为输入。我们还使用这些录音来通过自我监督来学习多式式表现,通过培训网络以将图像与其相应的声音相关联。这些结果表明环境声音传达了关于场景结构的令人惊讶的信息,并且它是学习多模峰特征的有用信号。
translated by 谷歌翻译
最近的成功表明,可以通过文本提示来操纵图像,例如,在雨天的晴天,在雨天中被操纵到同一场景中,这是由文本输入“下雨”驱动的雨天。这些方法经常利用基于样式的图像生成器,该生成器利用多模式(文本和图像)嵌入空间。但是,我们观察到,这种文本输入通常在提供和综合丰富的语义提示时被瓶颈瓶颈,例如将大雨与雨雨区分开。为了解决这个问题,我们主张利用另一种方式,声音,在图像操纵中具有显着优势,因为它可以传达出比文本更多样化的语义提示(生动的情感或自然世界的动态表达)。在本文中,我们提出了一种新颖的方法,该方法首先使用声音扩展了图像文本接头嵌入空间,并应用了一种直接的潜在优化方法来根据音频输入(例如雨的声音)操纵给定的图像。我们的广泛实验表明,我们的声音引导的图像操纵方法在语义和视觉上比最先进的文本和声音引导的图像操纵方法产生更合理的操作结果,这通过我们的人类评估进一步证实。我们的下游任务评估还表明,我们学到的图像文本单嵌入空间有效地编码声音输入。
translated by 谷歌翻译
增强现实设备具有增强人类感知的潜力,并使复杂的会话环境中的其他辅助功能能够实现。有效地捕获理解这些社交交互所必需的视听上下文首先需要检测和定位设备佩戴者和周围人的语音活动。这些任务由于它们的高电平性质而挑战:佩戴者的头部运动可能导致运动模糊,周围的人可能出现在困难的观察中,并且可能有遮挡,视觉杂乱,音频噪声和畸形。在这些条件下,以前的最先进的主动扬声器检测方法不会给出令人满意的结果。相反,我们使用视频和多通道麦克风阵列音频从新设置中解决问题。我们提出了一种新的端到端深度学习方法,可以提供强大的语音活动检测和本地化结果。与以前的方法相比,我们的方法将主动扬声器从球体上的所有可能方向定位,即使在相机的视野之外,同时检测设备佩戴者自己的语音活动。我们的实验表明,该方法提供了卓越的结果,可以实时运行,并且对抗噪音和杂乱是强大的。
translated by 谷歌翻译