The mainstream of the existing approaches for video prediction builds up their models based on a Single-In-Single-Out (SISO) architecture, which takes the current frame as input to predict the next frame in a recursive manner. This way often leads to severe performance degradation when they try to extrapolate a longer period of future, thus limiting the practical use of the prediction model. Alternatively, a Multi-In-Multi-Out (MIMO) architecture that outputs all the future frames at one shot naturally breaks the recursive manner and therefore prevents error accumulation. However, only a few MIMO models for video prediction are proposed and they only achieve inferior performance due to the date. The real strength of the MIMO model in this area is not well noticed and is largely under-explored. Motivated by that, we conduct a comprehensive investigation in this paper to thoroughly exploit how far a simple MIMO architecture can go. Surprisingly, our empirical studies reveal that a simple MIMO model can outperform the state-of-the-art work with a large margin much more than expected, especially in dealing with longterm error accumulation. After exploring a number of ways and designs, we propose a new MIMO architecture based on extending the pure Transformer with local spatio-temporal blocks and a new multi-output decoder, namely MIMO-VP, to establish a new standard in video prediction. We evaluate our model in four highly competitive benchmarks (Moving MNIST, Human3.6M, Weather, KITTI). Extensive experiments show that our model wins 1st place on all the benchmarks with remarkable performance gains and surpasses the best SISO model in all aspects including efficiency, quantity, and quality. We believe our model can serve as a new baseline to facilitate the future research of video prediction tasks. The code will be released.
translated by 谷歌翻译
时尚预测学习是给定一系列历史框架的未来框架。传统算法主要基于经常性的神经网络(RNN)。然而,由于经常性结构的序列性,RNN遭受了重大计算负担,例如由于经常性结构的序列性而达到时间和长的背部传播过程。最近,还以编码器 - 解码器或普通编码器的形式研究了基于变压器的方法,但是编码器 - 解码器形式需要过于深的网络,并且普通编码器缺乏短期依赖性。为了解决这些问题,我们提出了一种名为3D时间卷积变压器(TCTN)的算法,其中采用具有时间卷积层的基于变压器的编码器来捕获短期和长期依赖性。由于变压器的并行机理,我们所提出的算法与基于RNN的方法相比,易于实施和培训得多。为了验证我们的算法,我们对移动和kth数据集进行实验,并表明TCTN在性能和训练速度下表现出最先进的(SOTA)方法。
translated by 谷歌翻译
Video prediction is a challenging computer vision task that has a wide range of applications. In this work, we present a new family of Transformer-based models for video prediction. Firstly, an efficient local spatial-temporal separation attention mechanism is proposed to reduce the complexity of standard Transformers. Then, a full autoregressive model, a partial autoregressive model and a non-autoregressive model are developed based on the new efficient Transformer. The partial autoregressive model has a similar performance with the full autoregressive model but a faster inference speed. The non-autoregressive model not only achieves a faster inference speed but also mitigates the quality degradation problem of the autoregressive counterparts, but it requires additional parameters and loss function for learning. Given the same attention mechanism, we conducted a comprehensive study to compare the proposed three video prediction variants. Experiments show that the proposed video prediction models are competitive with more complex state-of-the-art convolutional-LSTM based models. The source code is available at https://github.com/XiYe20/VPTR.
translated by 谷歌翻译
从CNN,RNN到VIT,我们见证了视频预测中的显着进步,结合了辅助输入,精心设计的神经体系结构和复杂的培训策略。我们钦佩这些进步,但对必要性感到困惑:是否有一种可以表现得很好的简单方法?本文提出了SIMVP,这是一个简单的视频预测模型,完全建立在CNN上,并以端到端的方式受到MSE损失的训练。在不引入任何其他技巧和复杂策略的情况下,我们可以在五个基准数据集上实现最先进的性能。通过扩展实验,我们证明了SIMVP在现实世界数据集上具有强大的概括和可扩展性。培训成本的显着降低使扩展到复杂方案变得更加容易。我们认为SIMVP可以作为刺激视频预测进一步发展的坚实基线。该代码可在\ href {https://github.com/gaozhangyang/simvp-simpler-yet-better-video-prediction} {github}中获得。
translated by 谷歌翻译
We are introducing a multi-scale predictive model for video prediction here, whose design is inspired by the "Predictive Coding" theories and "Coarse to Fine" approach. As a predictive coding model, it is updated by a combination of bottom-up and top-down information flows, which is different from traditional bottom-up training style. Its advantage is to reduce the dependence on input information and improve its ability to predict and generate images. Importantly, we achieve with a multi-scale approach -- higher level neurons generate coarser predictions (lower resolution), while the lower level generate finer predictions (higher resolution). This is different from the traditional predictive coding framework in which higher level predict the activity of neurons in lower level. To improve the predictive ability, we integrate an encoder-decoder network in the LSTM architecture and share the final encoded high-level semantic information between different levels. Additionally, since the output of each network level is an RGB image, a smaller LSTM hidden state can be used to retain and update the only necessary hidden information, avoiding being mapped to an overly discrete and complex space. In this way, we can reduce the difficulty of prediction and the computational overhead. Finally, we further explore the training strategies, to address the instability in adversarial training and mismatch between training and testing in long-term prediction. Code is available at https://github.com/Ling-CF/MSPN.
translated by 谷歌翻译
时空预测学习旨在通过从历史框架中学习来产生未来的帧。在本文中,我们研究了现有方法,并提出了时空预测学习的一般框架,其中空间编码器和解码器捕获框架内特征和中间时间模块捕获框架间相关性。尽管主流方法采用经常性单元来捕获长期的时间依赖性,但由于无法可行的架构,它们的计算效率低。为了使时间模块并行,我们提出了时间注意单元(TAU),该单元将时间关注分解为框内静态注意力和框架间动力学注意力。此外,虽然平方误差损失侧重于框架内错误,但我们引入了一种新颖的差异差异正则化,以考虑框架间的变化。广泛的实验表明,所提出的方法使派生模型能够在各种时空预测基准上实现竞争性能。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
我们提出了一种新颖的基于变压器的架构,用于3D人类运动的生成建模任务。以前的工作通常依赖于基于RNN的模型,考虑到更短的预测视野迅速达到静止和通常难以置信的状态。最近的研究表明,频域中的隐式时间表示也是有效地制定预定地平线的预测。我们的重点是学习自向学习时空陈述,从而在短期和长期生成合理的未来发展。该模型学习骨骼关节的高尺寸嵌入,以及如何通过去耦的时间和空间自我关注机制来组成时间相干的姿势。我们的双重关注概念允许模型直接访问电流和过去信息,并明确捕获结构和时间依赖项。我们凭经验显示,这有效地了解潜在的运动动态,并减少自动回归模型中观察到的误差累积。我们的模型能够在长视程中产生准确的短期预测和产生合理的运动序列。我们在HTTPS://github.com/eth-Ation-Transformer中公开公开提供我们的代码。
translated by 谷歌翻译
从传统上讲,地球系统(例如天气和气候)的预测依赖于具有复杂物理模型的数值模拟,因此在计算中既昂贵又对领域专业知识的需求既昂贵。在过去十年中时空地球观察数据的爆炸性增长中,应用深度学习(DL)的数据驱动模型表明了各种地球系统预测任务的潜力。尽管在其他领域取得了广泛的成功,但作为新兴DL架构的变压器在该领域的采用量有限。在本文中,我们提出了Earthformer,这是一种用于地球系统预测的时空变压器。 Earthformer基于一个通用,灵活和有效的时空注意块,名为Cuboid的注意力。这个想法是将数据分解为立方体,并平行应用立方体级别的自我注意力。这些立方体与全球矢量的集合进一步相关。我们对MovingMnist数据集和新提出的混沌N体MNIST数据集进行了实验,以验证Cuboid注意的有效性,并找出地球形式的最佳设计。关于降水现象和El Nino/Southern振荡(ENSO)预测的两个现实基准测试的实验表明,Earthformer实现了最新的性能。
translated by 谷歌翻译
了解3D场景是自治代理的关键先决条件。最近,LIDAR和其他传感器已经以点云帧的时间序列形式提供了大量数据。在这项工作中,我们提出了一种新的问题 - 顺序场景流量估计(SSFE) - 该旨在预测给定序列中所有点云的3D场景流。这与先前研究的场景流程估计问题不同,这侧重于两个框架。我们介绍SPCM-NET架构,通过计算相邻点云之间的多尺度时空相关性,然后通过订单不变的复制单元计算多级时空相关性来解决这个问题。我们的实验评估证实,与仅使用两个框架相比,点云序列的复发处理导致SSFE明显更好。另外,我们证明可以有效地修改该方法,用于顺序点云预测(SPF),一种需要预测未来点云帧的相关问题。我们的实验结果是使用SSFE和SPF的新基准进行评估,包括合成和实时数据集。以前,场景流估计的数据集仅限于两个帧。我们为这些数据集提供非琐碎的扩展,用于多帧估计和预测。由于难以获得现实世界数据集的地面真理运动,我们使用自我监督的培训和评估指标。我们认为,该基准将在该领域的未来研究中关键。将可访问基准和型号的所有代码。
translated by 谷歌翻译
受认知科学中知名的预测编码理论的启发,我们为视觉框架预测任务提出了一种新型的神经网络模型。在本文中,我们的主要工作是结合预测编码和深度学习体系结构的理论框架,为视觉框架预测设计有效的预测网络模型。该模型分别由一系列复发和卷积单元组成,分别形成自上而下和自下而上的流。它学会了以视觉序列预测未来的帧,网络中的每一层中的弯曲器可以从上到下进行本地预测。我们模型的主要创新是,该层上神经单位的更新频率随着网络级别的提高而降低,从时间维度的角度来看,模型中的导致模型看起来像金字塔,因此我们称其为金字塔预测性网络(PPNET)。特别是,这种类似金字塔的设计与预测性编码框架涉及的神经科学发现中的神经元活性一致。根据实验结果,该模型与现有作品显示出更好的紧凑性和可比的预测性能,这意味着较低的计算成本和较高的预测准确性。代码将在https://github.com/ling-cf/ppnet上找到。
translated by 谷歌翻译
时空预测学习是通过历史先验知识来预测未来的框架变化。以前的工作通过使网络更广泛和更深入来改善性能,但这也带来了巨大的内存开销,这严重阻碍了技术的开发和应用。比例是提高普通计算机视觉任务中模型性能的另一个维度,这可以减少计算要求并更好地感知环境。最近的RNN模型尚未考虑和探索如此重要的维度。在本文中,我们从多尺度的好处中学习,我们提出了一个名为多尺度RNN(MS-RNN)的通用框架,以增强最近的RNN模型。我们通过在4个不同的数据集上使用6种流行的RNN模型(Convlstm,Trajgru,Predrnn,Prodrnn ++,MIM和MotionRNN)进行详尽的实验来验证MS-RNN框架。结果表明,将RNN模型纳入我们的框架的效率低得多,但性能比以前更好。我们的代码在\ url {https://github.com/mazhf/ms-rnn}上发布。
translated by 谷歌翻译
视觉变压器正在成为解决计算机视觉问题的强大工具。最近的技术还证明了超出图像域之外的变压器来解决许多与视频相关的任务的功效。其中,由于其广泛的应用,人类的行动识别是从研究界受到特别关注。本文提供了对动作识别的视觉变压器技术的首次全面调查。我们朝着这个方向分析并总结了现有文献和新兴文献,同时突出了适应变形金刚以进行动作识别的流行趋势。由于其专业应用,我们将这些方法统称为``动作变压器''。我们的文献综述根据其架构,方式和预期目标为动作变压器提供了适当的分类法。在动作变压器的背景下,我们探讨了编码时空数据,降低维度降低,框架贴片和时空立方体构造以及各种表示方法的技术。我们还研究了变压器层中时空注意的优化,以处理更长的序列,通常通过减少单个注意操作中的令牌数量。此外,我们还研究了不同的网络学习策略,例如自我监督和零局学习,以及它们对基于变压器的行动识别的相关损失。这项调查还总结了在具有动作变压器重要基准的评估度量评分方面取得的进步。最后,它提供了有关该研究方向的挑战,前景和未来途径的讨论。
translated by 谷歌翻译
本文介绍了一个新型的预训练的空间时间多对一(p-STMO)模型,用于2D到3D人类姿势估计任务。为了减少捕获空间和时间信息的困难,我们将此任务分为两个阶段:预训练(I期)和微调(II阶段)。在第一阶段,提出了一个自我监督的预训练子任务,称为蒙面姿势建模。输入序列中的人关节在空间和时间域中随机掩盖。利用denoising自动编码器的一般形式以恢复原始的2D姿势,并且编码器能够以这种方式捕获空间和时间依赖性。在第二阶段,将预训练的编码器加载到STMO模型并进行微调。编码器之后是一个多对一的框架聚合器,以预测当前帧中的3D姿势。尤其是,MLP块被用作STMO中的空间特征提取器,其性能比其他方法更好。此外,提出了一种时间下采样策略,以减少数据冗余。在两个基准上进行的广泛实验表明,我们的方法优于较少参数和较少计算开销的最先进方法。例如,我们的P-STMO模型在使用CPN作为输入的2D姿势时,在Human3.6M数据集上达到42.1mm MPJPE。同时,它为最新方法带来了1.5-7.1倍的速度。代码可在https://github.com/patrick-swk/p-stmo上找到。
translated by 谷歌翻译
序列表示学习的主要挑战是捕获远程时间依赖性。监督序列表示学习的典型方法是基于复发性神经网络构建的,以捕获时间依赖性。这些方法的一个潜在局限性是,它们仅在序列中明确对相邻时间步长的一阶信息相互作用进行建模,因此,未完全利用了非相应时间步长之间的高阶相互作用。它极大地限制了建模远程时间依赖性的能力,因为由于时间信息稀释和梯度消失,无法长期保持一阶相互作用所学的时间特征。为了应对这一限制,我们提出了用于监督序列表示学习的非本地复发性神经记忆(NRNM),该学习执行非本地操作\ Mr {通过自我关注机制}以在滑动时间内学习全阶相互作用内存块和模拟内存块之间的全局相互作用以封闭式的复发方式。因此,我们的模型能够捕获远程依赖性。此外,我们的模型可以蒸馏出高阶相互作用中包含的潜在高级特征。我们验证了NRNM在不同模态的三种序列应用上的有效性和概括,包括序列分类,逐步的顺序预测和序列相似性学习。我们的模型与针对这些序列应用中的每个序列应用专门设计的其他最新方法进行了比较。
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
用于深度卷积神经网络的视频插值的现有方法,因此遭受其内在限制,例如内部局限性核心权重和受限制的接收领域。为了解决这些问题,我们提出了一种基于变换器的视频插值框架,允许内容感知聚合权重,并考虑具有自我关注操作的远程依赖性。为避免全球自我关注的高计算成本,我们将当地注意的概念引入视频插值并将其扩展到空间域。此外,我们提出了一个节省时间的分离策略,以节省内存使用,这也提高了性能。此外,我们开发了一种多尺度帧合成方案,以充分实现变压器的潜力。广泛的实验证明了所提出的模型对最先进的方法来说,定量和定性地在各种基准数据集上进行定量和定性。
translated by 谷歌翻译
动作检测的任务旨在在每个动作实例中同时推论动作类别和终点的本地化。尽管Vision Transformers推动了视频理解的最新进展,但由于在长时间的视频剪辑中,设计有效的架构以进行动作检测是不平凡的。为此,我们提出了一个有效的层次时空时空金字塔变压器(STPT)进行动作检测,这是基于以下事实:变压器中早期的自我注意力层仍然集中在局部模式上。具体而言,我们建议在早期阶段使用本地窗口注意来编码丰富的局部时空时空表示,同时应用全局注意模块以捕获后期的长期时空依赖性。通过这种方式,我们的STPT可以用冗余的大大减少来编码区域和依赖性,从而在准确性和效率之间进行有希望的权衡。例如,仅使用RGB输入,提议的STPT在Thumos14上获得了53.6%的地图,超过10%的I3D+AFSD RGB模型超过10%,并且对使用其他流量的额外流动功能的表现较少,该流量具有31%的GFLOPS ,它是一个有效,有效的端到端变压器框架,用于操作检测。
translated by 谷歌翻译
不确定性在未来预测中起关键作用。未来是不确定的。这意味着可能有很多可能的未来。未来的预测方法应涵盖坚固的全部可能性。在自动驾驶中,涵盖预测部分中的多种模式对于做出安全至关重要的决策至关重要。尽管近年来计算机视觉系统已大大提高,但如今的未来预测仍然很困难。几个示例是未来的不确定性,全面理解的要求以及嘈杂的输出空间。在本论文中,我们通过以随机方式明确地对运动进行建模并学习潜在空间中的时间动态,从而提出了解决这些挑战的解决方案。
translated by 谷歌翻译
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-theart operational ROVER algorithm for precipitation nowcasting.
translated by 谷歌翻译