Current state-of-the-art deep neural networks for image classification are made up of 10 - 100 million learnable weights and are therefore inherently prone to overfitting. The complexity of the weight count can be seen as a function of the number of channels, the spatial extent of the input and the number of layers of the network. Due to the use of convolutional layers the scaling of weight complexity is usually linear with regards to the resolution dimensions, but remains quadratic with respect to the number of channels. Active research in recent years in terms of using multigrid inspired ideas in deep neural networks have shown that on one hand a significant number of weights can be saved by appropriate weight sharing and on the other that a hierarchical structure in the channel dimension can improve the weight complexity to linear. In this work, we combine these multigrid ideas to introduce a joint framework of multigrid inspired architectures, that exploit multigrid structures in all relevant dimensions to achieve linear weight complexity scaling and drastically reduced weight counts. Our experiments show that this structured reduction in weight count is able to reduce overfitting and thus shows improved performance over state-of-the-art ResNet architectures on typical image classification benchmarks at lower network complexity.
translated by 谷歌翻译
我们提出了一种多移民通道(MGIC)方法,该方法可以解决参数数量相对于标准卷积神经网络(CNN)中的通道数的二次增长。因此,我们的方法解决了CNN中的冗余,这也被轻量级CNN的成功所揭示。轻巧的CNN可以达到与参数较少的标准CNN的可比精度。但是,权重的数量仍然随CNN的宽度四倍地缩放。我们的MGIC体系结构用MGIC对应物代替了每个CNN块,该块利用了小组大小的嵌套分组卷积的层次结构来解决此问题。因此,我们提出的架构相对于网络的宽度线性扩展,同时保留了通道的完整耦合,如标准CNN中。我们对图像分类,分割和点云分类进行的广泛实验表明,将此策略应用于Resnet和MobilenetV3等不同体系结构,可以减少参数的数量,同时获得相似或更好的准确性。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
我们将受约束的线性数据特征映射模型提出作为使用卷积神经网络(CNN)的图像分类的可解释数学模型。从这个角度来看,我们建立了线性系统的传统迭代方案与Reset-and Mgnet型模型的基本块体系结构之间的详细连接。使用这些连接,我们介绍了一些修改的Reset模型,与原始模型相比具有更少的参数,但可以产生更准确的结果,从而展示该受约束的学习数据特征映射假设的有效性。基于此假设,我们进一步提出了一般的数据特征迭代方案来展示MGNet的合理性。我们还对MGNet提供系统的数值研究,以显示其在图像分类问题中的成功和优势,并展示其与已建立的网络相比的优点。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train. To tackle these problems, in this paper we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts. For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layerdeep networks, achieving new state-of-the-art results on CIFAR, SVHN, COCO, and significant improvements on ImageNet. Our code and models are available at https: //github.com/szagoruyko/wide-residual-networks.
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
由于现代嵌入式系统和具有受约束资源的移动设备的出现,对机器学习目的的令人难以置信的深度神经网络有很大的需求。当他们的数据处理并存储在外部服务器中,在进一步推动了对本地嵌入式系统的实时推断的需要开发这种有效的神经网络的需要时,对一般公众的隐私和保密性越来越关注。本文呈现的工作范围仅限于使用卷积神经网络的图像分类。卷积神经网络(CNN)是一类深神经网络(DNN)广泛用于通过图像传感器捕获的视觉图像的分析,旨在提取信息并将其转换为有意义的表示,以便输入数据的实时推断。在本文中,我们提出了一种深度卷积神经网络架构的近期变体来改善现有CNN架构对嵌入式系统的实时推断的性能。我们表明,与基线神经网络架构,CondenSenet,通过减少培训网络所需的培训参数和拖鞋,在维护培训的模型尺寸低于3.0 MB之间的平衡和准确性之间的平衡折衷导致前所未有的计算效率。
translated by 谷歌翻译
Automl的一个重要目标是自动化在探索域内的新任务上的神经网络设计。通过这一目标激励,我们研究了使用户能够发现来自其特定域的数据的正确神经操作的问题。我们介绍一个名为XD-Operation的搜索空间,这些操作模仿标准多通道卷曲的归纳偏差,同时更具表现力:我们证明它包括多个应用程序区域的许多命名操作。从Reset等任何标准骨干开始,我们展示了如何通过XD操作将其转换为搜索空间以及如何使用简单的权重共享方案遍历空间。在各种任务组合 - 求解PDES,距离蛋白质折叠和音乐建模的距离预测 - 我们的方法一致地产生比基线网络更低的误差的模型,并且通常更低的误差比专业设计的域特定方法更低。
translated by 谷歌翻译
我们为深度残留网络(RESNETS)提出了一种全球收敛的多级训练方法。设计的方法可以看作是递归多级信任区域(RMTR)方法的新型变体,该方法通过在训练过程中自适应调节迷你批量,在混合(随机确定性)设置中运行。多级层次结构和传输运算符是通过利用动力学系统的观点来构建的,该观点通过重新连接来解释远期传播作为对初始值问题的正向Euler离散化。与传统的培训方法相反,我们的新型RMTR方法还通过有限的内存SR1方法结合了有关多级层次结构各个级别的曲率信息。使用分类和回归领域的示例,对我们的多级训练方法的总体性能和收敛属性进行了数值研究。
translated by 谷歌翻译
In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.
translated by 谷歌翻译
在本文中,我们提出了解决稳定性和卷积神经网络(CNN)的稳定性和视野的问题的神经网络。作为提高网络深度或宽度以提高性能的替代方案,我们提出了与全球加权拉普拉斯,分数拉普拉斯和逆分数拉普拉斯算子有关的基于积分的空间非识别算子,其在物理科学中的几个问题中出现。这种网络的前向传播由部分积分微分方程(PIDE)启发。我们在自动驾驶中测试基准图像分类数据集和语义分段任务的提出神经架构的有效性。此外,我们调查了这些密集的运营商的额外计算成本以及提出神经网络的前向传播的稳定性。
translated by 谷歌翻译
在每个卷积层中学习一个静态卷积内核是现代卷积神经网络(CNN)的常见训练范式。取而代之的是,动态卷积的最新研究表明,学习$ n $卷积核与输入依赖性注意的线性组合可以显着提高轻重量CNN的准确性,同时保持有效的推断。但是,我们观察到现有的作品endow卷积内核具有通过一个维度(关于卷积内核编号)的动态属性(关于内核空间的卷积内核编号),但其他三个维度(关于空间大小,输入通道号和输出通道编号和输出通道号,每个卷积内核)被忽略。受到这一点的启发,我们提出了Omni维动态卷积(ODCONV),这是一种更普遍而优雅的动态卷积设计,以推进这一研究。 ODCONV利用了一种新型的多维注意机制,采用平行策略来学习沿着任何卷积层的内核空间的所有四个维度学习卷积内核的互补关注。作为定期卷积的倒数替换,可以将ODCONV插入许多CNN架构中。 ImageNet和MS-Coco数据集的广泛实验表明,ODCONV为包括轻量重量和大型的各种盛行的CNN主链带来了可靠的准确性提升,例如3.77%〜5.71%| 1.86%〜3.72%〜3.72%的绝对1个绝对1改进至ImabivLenetV2 | ImageNet数据集上的重新连接家族。有趣的是,由于其功能学习能力的提高,即使具有一个单个内核的ODCONV也可以与具有多个内核的现有动态卷积对应物竞争或超越现有的动态卷积对应物,从而大大降低了额外的参数。此外,ODCONV也优于其他注意模块,用于调节输出特征或卷积重量。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们在监督分类的背景下研究深网的过剩能力。也就是说,给定对基本假设类别的能力度量(在我们的情况下,是经验性的Rademacher的复杂性),我们(先验)可以限制该类别的数量,同时在与无约束性方面保持经验误差的同时保留经验误差?为了评估现代体系结构(例如残留网络)的过剩能力,我们扩展并统一了先前的Rademacher复杂性界限,以适应功能组成和添加以及卷积的结构。我们边界中的容量驱动项是层的Lipschitz常数和卷积权重初始化的(2,1)组的范围距离。在不同任务难度的基准数据集上进行的实验表明,(1)每个任务的容量大量超过容量,并且(2)可以将容量保持在整个任务的惊人相似水平。总体而言,这表明了重量规范的可压缩性概念,这是通过重量修剪正交的经典压缩概念。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design.Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.
translated by 谷歌翻译