The existence of metallic implants in projection images for cone-beam computed tomography (CBCT) introduces undesired artifacts which degrade the quality of reconstructed images. In order to reduce metal artifacts, projection inpainting is an essential step in many metal artifact reduction algorithms. In this work, a hybrid network combining the shift window (Swin) vision transformer (ViT) and a convolutional neural network is proposed as a baseline network for the inpainting task. To incorporate metal information for the Swin ViT-based encoder, metal-conscious self-embedding and neighborhood-embedding methods are investigated. Both methods have improved the performance of the baseline network. Furthermore, by choosing appropriate window size, the model with neighborhood-embedding could achieve the lowest mean absolute error of 0.079 in metal regions and the highest peak signal-to-noise ratio of 42.346 in CBCT projections. At the end, the efficiency of metal-conscious embedding on both simulated and real cadaver CBCT data has been demonstrated, where the inpainting capability of the baseline network has been enhanced.
translated by 谷歌翻译
基于深入的学习的断层摄影图像重建一直在这些年来引起了很多关注。稀疏视图数据重建是典型的未确定逆问题之一,如何从数十个投影重建高质量CT图像仍然是实践中的挑战。为了解决这一挑战,在本文中,我们提出了一个多域一体化的Swin变压器网络(MIST-NET)。首先,使用灵活的网络架构,所提出的雾网掺入了来自数据,残差数据,图像和剩余图像的豪华域特征。这里,残差数据和残差 - 图像域网组件可以被认为是数据一致性模块,以消除残差数据和图像域中的插值误差,然后进一步保持图像细节。其次,为了检测图像特征和进一步保护图像边缘,将培训的Sobel滤波器结合到网络中以提高编码解码能力。第三,随着经典的Swin变压器,我们进一步设计了高质量的重建变压器(即,REFFORMER)来提高重建性能。 REFFORMER继承了SWIN变压器的功率以捕获重建图像的全局和本地特征。具有48种视图的数值数据集的实验证明了我们所提出的雾网提供更高的重建图像质量,具有小的特征恢复和边缘保护,而不是其他竞争对手,包括高级展开网络。定量结果表明,我们的雾网也获得了最佳性能。训练有素的网络被转移到真实的心脏CT数据集,48次视图,重建结果进一步验证了我们的雾网的优势,进一步证明了临床应用中雾的良好稳健性。
translated by 谷歌翻译
在骨科手术期间,通常在移动C臂系统下进行金属植入物或螺钉的插入。由于金属的衰减很大,因此在3D重建中发生了严重的金属伪像,从而极大地降低了图像质量。为了减少工件,已经开发了许多金属伪像还原算法,并且在投影域中涂上金属是必不可少的步骤。在这项工作中,基于分数的生成模型在模拟的膝关节投影上进行了训练,并通过在条件重采样过程中删除噪声来获得成分图像。结果暗示,与基于分数的生成模型对图像具有更详细的信息,并获得了与基于插值和基于CNN的方法相比,达到最低的平均绝对误差和最高峰值信号到噪声。此外,基于分数的模型还可以用大圆形和矩形掩模恢复预测,从而显示其在介入任务中的概括。
translated by 谷歌翻译
视觉变形金刚(VIT)S表现出可观的全球和本地陈述的自我监督学习表现,可以转移到下游应用程序。灵感来自这些结果,我们介绍了一种新的自我监督学习框架,具有用于医学图像分析的定制代理任务。具体而言,我们提出:(i)以新的3D变压器为基础的型号,被称为往返变压器(Swin Unet),具有分层编码器,用于自我监督的预训练; (ii)用于学习人类解剖学潜在模式的定制代理任务。我们展示了来自各种身体器官的5,050个公共可用的计算机断层扫描(CT)图像的提出模型的成功预培训。通过微调超出颅穹窿(BTCV)分割挑战的预先调整训练模型和来自医疗细分牌组(MSD)数据集的分割任务,通过微调训练有素的模型来验证我们的方法的有效性。我们的模型目前是MSD和BTCV数据集的公共测试排行榜上的最先进的(即第1号)。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
目的:在手术规划之前,CT图像中肝血管的分割是必不可少的,并引起了医学图像分析界的广泛兴趣。由于结构复杂,对比度背景下,自动肝脏血管分割仍然特别具有挑战性。大多数相关的研究采用FCN,U-Net和V-Net变体作为骨干。然而,这些方法主要集中在捕获多尺度局部特征,这可能导致由于卷积运营商有限的地区接收领域而产生错误分类的体素。方法:我们提出了一种强大的端到端血管分割网络,通过将SWIN变压器扩展到3D并采用卷积和自我关注的有效组合,提出了一种被称为电感偏置的多头注意船网(IBIMHAV-NET)的稳健端到端血管分割网络。在实践中,我们介绍了Voxel-Wise嵌入而不是修补程序嵌入,以定位精确的肝脏血管素,并采用多尺度卷积运营商来获得局部空间信息。另一方面,我们提出了感应偏置的多头自我关注,其学习从初始化的绝对位置嵌入的归纳偏置相对位置嵌入嵌入。基于此,我们可以获得更可靠的查询和键矩阵。为了验证我们模型的泛化,我们测试具有不同结构复杂性的样本。结果:我们对3Dircadb数据集进行了实验。四种测试病例的平均骰子和敏感性为74.8%和77.5%,超过现有深度学习方法的结果和改进的图形切割方法。结论:拟议模型IBIMHAV-Net提供一种具有交错架构的自动,精确的3D肝血管分割,可更好地利用CT卷中的全局和局部空间特征。它可以进一步扩展到其他临床数据。
translated by 谷歌翻译
The development of deep learning models in medical image analysis is majorly limited by the lack of large-sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solving medical image analysis problems. However, most of the current unsupervised learning methods need to be applied to large datasets. To make unsupervised learning applicable to small datasets, we proposed Swin MAE, which is a masked autoencoder with Swin Transformer as its backbone. Even on a dataset of only a few thousand medical images and without using any pre-trained models, Swin MAE is still able to learn useful semantic features purely from images. It can equal or even slightly outperform the supervised model obtained by Swin Transformer trained on ImageNet in terms of the transfer learning results of downstream tasks. The code will be publicly available soon.
translated by 谷歌翻译
基于卷积神经网络(CNN)框架对图像支出进行了很好的研究,最近引起了计算机视觉的更多关注。但是,CNN依靠固有的电感偏见来实现有效的样品学习,这可能会降低性能上限。在本文中,以最小的变压器体系结构中的柔性自我发挥机制的启发,我们将广义图像支出问题重新构架为贴片的序列到序列自动估计问题,从而使基于查询的图像映射出现。具体而言,我们提出了一个新型混合视觉转换器基于编码器框架,名为\ textbf {query} \ textbf {o} utpainting \ textbf {trextbf {tr} ansformer(\ textbf {queryotr})围绕给定的图像。 Patch Mode的全球建模能力使我们可以从注意机制的查询角度推断图像。新颖的查询扩展模块(QEM)旨在根据编码器的输出从预测查询中整合信息,因此即使使用相对较小的数据集,也可以加速纯变压器的收敛性。为了进一步提高每个贴片之间的连接性,提议的贴片平滑模块(PSM)重新分配并平均重叠区域,从而提供无缝的预测图像。我们在实验上表明,QueryOtr可以针对最新的图像支出方法平稳和现实地产生吸引力的结果。
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
高动态范围(HDR)DEGHOSTING算法旨在生成具有现实细节的无幽灵HDR图像。受到接收场的局部性的限制,现有的基于CNN的方法通常容易产生大型运动和严重饱和的情况下产生鬼影和强度扭曲。在本文中,我们提出了一种新颖的背景感知视觉变压器(CA-VIT),用于无幽灵的高动态范围成像。 CA-VIT被设计为双分支结构,可以共同捕获全球和本地依赖性。具体而言,全球分支采用基于窗口的变压器编码器来建模远程对象运动和强度变化以解决hosting。对于本地分支,我们设计了局部上下文提取器(LCE)来捕获短范围的图像特征,并使用频道注意机制在提取的功能上选择信息丰富的本地详细信息,以补充全局分支。通过将CA-VIT作为基本组件纳入基本组件,我们进一步构建了HDR-Transformer,这是一个分层网络,以重建高质量的无幽灵HDR图像。在三个基准数据集上进行的广泛实验表明,我们的方法在定性和定量上优于最先进的方法,而计算预算大大降低。代码可从https://github.com/megvii-research/hdr-transformer获得
translated by 谷歌翻译
金属伪影校正是锥形束计算机断层扫描(CBCT)扫描中的一个具有挑战性的问题。插入解剖结构的金属植入物在重建图像中导致严重的伪影。广泛使用的基于介入的金属伪像减少(MAR)方法需要对投影中的金属痕迹进行分割,这是一项艰巨的任务。一种方法是使用深度学习方法来细分投影中的金属。但是,深度学习方法的成功受到现实培训数据的可用性的限制。由于植入物边界和大量预测,获得可靠的地面真相注释是充满挑战和耗时的。我们建议使用X射线模拟从临床CBCT扫描中生成合成金属分割训练数据集。我们比较具有不同数量的光子的仿真效果,还比较了几种培训策略以增加可用数据。我们将模型在真实临床扫描中的性能与常规阈值MAR和最近的深度学习方法进行比较。我们表明,具有相对较少光子的模拟适用于金属分割任务,并且用全尺寸和裁剪的投影训练深度学习模型共同提高了模型的鲁棒性。我们显示出受严重运动,体素尺寸下采样和落水量金属影响的图像质量的显着改善。我们的方法可以轻松地在现有的基于投影的MAR管道中实现,以提高图像质量。该方法可以为准确分割CBCT投影中的金属提供新的范式。
translated by 谷歌翻译
创伤干预的阳性结果取决于插入的金属植入物的术中评价。由于金属伪影,该评估的质量大大取决于所谓的金属伪影减少方法(MAR)的性能。这些MAR方法中的大多数需要先前的插入金属物体分割。因此,尽管存在一些主要缺点,但是,施加在重建的3D体积中的基于基于阈值的分割方法的通常。利用本出版物,研究了将分割任务转移到基于学习的基于学习的视图 - 一致的2D投影的方法的可能性。为了分割本金属,研究了使用在CADaVer研究期间获得的真实数据进行培训的基于基于学习的2D投影明智的分割网络。为了克服与2D投影明智分割的缺点,提出了一种一致性滤波器。通过使用新的分段掩码将标准FSMAR的结果与修改后的FSMAR版本进行比较,研究了移位分割域的影响。对真实尸体数据进行定量和定性评估,调查方法显示了MAR性能增加和对金属伪影的不敏感性。对于重建外部的金属外部的金属或消失金属外壳的情况,可以显示伪影的显着降低。因此,增加到大约3 dB w.r.t.实现了所有切片的平均PSNR度量,单切片最多9 dB。所示结果揭示了转变对基于2D的分段方法的有益影响,以便使用MAS方法的下游使用的真实数据。
translated by 谷歌翻译
最近,蒙面图像建模(MIM)由于其能力从大量未标记的数据中学习而引起了人们的关注,并且已被证明对涉及自然图像的各种视觉任务有效。同时,由于未标记的图像的数量高,预计3D医学图像中的自我监督学习的潜力预计将是巨大的,以及质量标签的费用和困难。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的图像建模方法还可以推进3D医学图像分析,除了自然图像。我们研究掩盖图像建模策略如何从3D医学图像分割的角度利用性能作为代表性的下游任务:i)与天真的对比度学习相比,蒙版的图像建模方法可以加快监督培训的收敛性,甚至更快(1.40美元$ \ times $ \ times $ $ $ )并最终产生更高的骰子分数; ii)预测具有较高掩盖比和相对较小的贴片大小的原始体素值是用于医学图像建模的非平凡的自我监督借口任务; iii)重建的轻质解码器或投影头设计对于3D医学图像上的掩盖图像建模非常有力,该图像加快了训练并降低成本; iv)最后,我们还研究了在不同的实际情况下使用不同图像分辨率和标记的数据比率的MIM方法的有效性。
translated by 谷歌翻译
通过利用深层神经网络(DNN)来建模各种先前的信息以恢复图像,许多最近的介绍作品都取得了令人印象深刻的结果。不幸的是,这些方法的性能在很大程度上受到了香草卷积神经网络(CNNS)骨架的表示能力的限制。另一方面,具有自我监督的预训练的视觉变压器(VIT)显示出许多视觉识别和许多视觉识别的潜力对象检测任务。一个自然的问题是,VIT主链是否可以大大受益?但是,直接替换在内部网络中的新骨干是不是很普遍的,因为indpainting与识别任务根本不同。为此,本文将基于训练的胶面膜自动编码器(MAE)结合到了indpaining模型中,该模型具有更丰富的信息学先验,以增强涂漆过程。此外,我们建议使用MAE的注意力学先验,以使介绍模型学习掩盖区域和未掩盖区域之间更多的长距离依赖关系。已经讨论了有关本文内部介绍和自我监督的预训练模型的足够消融。此外,对Ploce2和FFHQ的实验证明了我们提出的模型的有效性。代码和预培训模型在https://github.com/ewrfcas/mae-far中发布。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
由于其定量优点和高灵敏度,位置排放断层扫描(PET)被广泛用于诊所和研究中,但遭受了低信噪比(SNR)的侵害。最近,卷积神经网络(CNN)已被广泛用于提高宠物图像质量。尽管在局部特征提取方面取得了成功和有效的效率,但由于其接受场有限,CNN无法很好地捕获远距离依赖性。全球多头自我注意力(MSA)是捕获远程信息的流行方法。但是,3D图像的全局MSA计算具有较高的计算成本。在这项工作中,我们提出了一个有效的空间和渠道编码器变压器Spach Transformer,可以基于本地和全局MSA来利用空间和渠道信息。基于不同宠物示踪剂数据集的实验,即$^{18} $ f-fdg,$^{18} $ f-acbc,$^{18} $ f-dcfpyl,$ f-dcfpyl和$^{68} $ ga--进行了Dotatate,以评估提出的框架。定量结果表明,所提出的SPACH变压器可以比其他参考方法获得更好的性能。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
特征图的分辨率对于医学图像分割至关重要。大多数现有用于医疗图像分割的基于变压器的网络都是U-NET样体系结构,其中包含一个编码器,该编码器利用一系列变压器块将输入医疗图像从高分辨率表示形式转换为低分辨率特征图和解码器这逐渐从低分辨率特征图中恢复了高分辨率表示。与以前的研究不同,在本文中,我们利用高分辨率网络(HRNET)的网络设计样式,用变压器块替换卷积层,并从变压器块生成的不同分辨率特征图中连续交换信息。本文介绍的新基于变压器的网络表示为高分辨率SWIN Transformer网络(HRSTNET)。广泛的实验表明,HRSTNET可以与基于最新的变压器类似于脑肿瘤分割的U-NET样结构(BRATS)2021和Medical Sementation Decathlon的肝数据集实现可比的性能。 HRSTNET代码将在https://github.com/auroua/hrstnet上公开获得。
translated by 谷歌翻译
虽然大多数当前的图像支出都进行了水平外推,但我们研究了广义图像支出问题,这些问题将视觉上下文推断出给定图像周围的全面。为此,我们开发了一个新型的基于变压器的生成对抗网络,称为U-Transformer,能够扩展具有合理结构和细节的图像边界,即使是复杂的风景图像。具体而言,我们将生成器设计为嵌入流行的Swin Transformer块的编码器到二次结构。因此,我们的新型框架可以更好地应对图像远程依赖性,这对于广义图像支出至关重要。我们另外提出了U形结构和多视图时间空间预测网络,以增强图像自我重建以及未知的零件预测。我们在实验上证明,我们提出的方法可以为针对最新图像支出方法提供广义图像支出产生可吸引人的结果。
translated by 谷歌翻译
在临床实践中,由于较短的获取时间和较低的存储成本,通常使用了平面分辨率低的各向异性体积医学图像。然而,粗分辨率可能导致医生或计算机辅助诊断算法的医学诊断困难。基于深度学习的体积超分辨率(SR)方法是改善分辨率的可行方法,其核心是卷积神经网络(CNN)。尽管进展最近,但这些方法受到卷积运算符的固有属性的限制,卷积运算符忽略内容相关性,无法有效地对远程依赖性进行建模。此外,大多数现有方法都使用伪配合的体积进行训练和评估,其中伪低分辨率(LR)体积是通过简单的高分辨率(HR)对应物的简单降解而产生的。但是,伪和现实LR之间的域间隙导致这些方法在实践中的性能不佳。在本文中,我们构建了第一个公共实用数据集RPLHR-CT作为体积SR的基准,并通过重新实现四种基于CNN的最先进的方法来提供基线结果。考虑到CNN的固有缺点,我们还提出了基于注意力机制的变压器体积超分辨率网络(TVSRN),完全与卷积分配。这是首次将纯变压器用于CT体积SR的研究。实验结果表明,TVSRN在PSNR和SSIM上的所有基准都显着胜过。此外,TVSRN方法在图像质量,参数数量和运行时间之间取得了更好的权衡。数据和代码可在https://github.com/smilenaxx/rplhr-ct上找到。
translated by 谷歌翻译