Humans can learn in a continuous manner. Old rarely utilized knowledge can be overwritten by new incoming information while important, frequently used knowledge is prevented from being erased. In artificial learning systems, lifelong learning so far has focused mainly on accumulating knowledge over tasks and overcoming catastrophic forgetting. In this paper, we argue that, given the limited model capacity and the unlimited new information to be learned, knowledge has to be preserved or erased selectively. Inspired by neuroplasticity, we propose a novel approach for lifelong learning, coined Memory Aware Synapses (MAS). It computes the importance of the parameters of a neural network in an unsupervised and online manner. Given a new sample which is fed to the network, MAS accumulates an importance measure for each parameter of the network, based on how sensitive the predicted output function is to a change in this parameter. When learning a new task, changes to important parameters can then be penalized, effectively preventing important knowledge related to previous tasks from being overwritten. Further, we show an interesting connection between a local version of our method and Hebb's rule, which is a model for the learning process in the brain. We test our method on a sequence of object recognition tasks and on the challenging problem of learning an embedding for predicting <subject, predicate, object> triplets. We show state-of-the-art performance and, for the first time, the ability to adapt the importance of the parameters based on unlabeled data towards what the network needs (not) to forget, which may vary depending on test conditions.
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
In this paper we introduce a model of lifelong learning, based on a Network of Experts. New tasks / experts are learned and added to the model sequentially, building on what was learned before. To ensure scalability of this process, data from previous tasks cannot be stored and hence is not available when learning a new task. A critical issue in such context, not addressed in the literature so far, relates to the decision which expert to deploy at test time. We introduce a set of gating autoencoders that learn a representation for the task at hand, and, at test time, automatically forward the test sample to the relevant expert. This also brings memory efficiency as only one expert network has to be loaded into memory at any given time. Further, the autoencoders inherently capture the relatedness of one task to another, based on which the most relevant prior model to be used for training a new expert, with fine-tuning or learningwithout-forgetting, can be selected. We evaluate our method on image classification and video prediction problems.
translated by 谷歌翻译
When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.
translated by 谷歌翻译
While deep learning has led to remarkable advances across diverse applications, it struggles in domains where the data distribution changes over the course of learning. In stark contrast, biological neural networks continually adapt to changing domains, possibly by leveraging complex molecular machinery to solve many tasks simultaneously. In this study, we introduce intelligent synapses that bring some of this biological complexity into artificial neural networks. Each synapse accumulates task relevant information over time, and exploits this information to rapidly store new memories without forgetting old ones. We evaluate our approach on continual learning of classification tasks, and show that it dramatically reduces forgetting while maintaining computational efficiency.
translated by 谷歌翻译
在基于人工神经网络的终身学习系统中,最大的障碍之一是在遇到新信息时无法保留旧知识。这种现象被称为灾难性遗忘。在本文中,我们提出了一种新型的连接主义架构,即顺序的神经编码网络,在从数据点流中学习时忘记了,并且与当今的网络不同,它不会通过流行的错误反向传播来学习。基于预测性处理的神经认知理论,我们的模型以生物学上可行的方式适应了突触,而另一个神经系统学会了指导和控制这种类似皮层的结构,模仿了一些基础神经节的某些任务连续控制功能。在我们的实验中,我们证明了与标准神经模型相比,我们的自组织系统经历的遗忘大大降低,表现优于先前提出的方法,包括基于排练/数据缓冲的方法,包括标准(SplitMnist,SplitMnist,Split Mnist等) 。)和定制基准测试,即使以溪流式的方式进行了训练。我们的工作提供了证据表明,在实际神经元系统中模仿机制,例如本地学习,横向竞争,可以产生新的方向和可能性,以应对终身机器学习的巨大挑战。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
Catastrophic forgetting occurs when a neural network loses the information learned in a previous task after training on subsequent tasks. This problem remains a hurdle for artificial intelligence systems with sequential learning capabilities. In this paper, we propose a task-based hard attention mechanism that preserves previous tasks' information without affecting the current task's learning. A hard attention mask is learned concurrently to every task, through stochastic gradient descent, and previous masks are exploited to condition such learning. We show that the proposed mechanism is effective for reducing catastrophic forgetting, cutting current rates by 45 to 80%. We also show that it is robust to different hyperparameter choices, and that it offers a number of monitoring capabilities. The approach features the possibility to control both the stability and compactness of the learned knowledge, which we believe makes it also attractive for online learning or network compression applications.
translated by 谷歌翻译
人的大脑能够依次地学习任务,而无需忘记。但是,深度神经网络(DNN)在学习一项任务时遭受灾难性遗忘。我们考虑了一个挑战,考虑了一个课堂学习方案,在该方案中,DNN看到测试数据而不知道该数据启动的任务。在培训期间,持续的捕获和选择(CP&S)在DNN中找到了负责解决给定任务的子网。然后,在推理期间,CP&S选择正确的子网以对该任务进行预测。通过培训DNN的可用神经元连接(以前未经训练)来创建一个新的子网络,从而通过修剪来学习一项新任务,该连接可以包括以前训练的其他子网络(S),因为它没有更新共享的连接,因为它可以属于其他子网络(S)。这使得通过在DNN中创建专门的区域而不会相互冲突的同时仍允许知识转移在其中,可以消除灾难性的遗忘。 CP&S策略采用不同的子网络选择策略实施,揭示了在各种数据集(CIFAR-100,CUB-200,2011年,Imagenet-100和Imagenet-100)上测试的最先进的持续学习方法的卓越性能。特别是,CP&S能够从Imagenet-1000中依次学习10个任务,以确保94%的精度,而遗忘可忽略不计,这是课堂学习学习的首要结果。据作者所知,与最佳替代方法相比,这表示准确性高于20%的改善。
translated by 谷歌翻译
新颖的检测方法识别不代表模型训练集的样本,从而标记误导性预测并在部署时间带来更大的灵活性和透明度。但是,该领域的研究仅考虑了离线环境中的新颖性检测。最近,在计算机视觉社区中,应用程序越来越多,应用程序需要更灵活的框架 - 持续学习 - 在该框架中,代表新域,新类或新任务的新数据在不同的时间点可用。在这种情况下,新颖性检测变得越来越重要,有趣且具有挑战性。这项工作确定了这两个问题之间的关键联系,并研究了持续学习环境下的新颖性检测问题。我们制定了持续的新颖性检测问题,并提出了基准,在该基准中,我们比较了不同持续学习设置下的几种新颖性检测方法。我们表明,持续学习会影响新颖性检测算法的行为,而新颖性检测可以确定持续学习者的行为的见解。我们进一步提出了基准并讨论可能的研究方向。我们认为,这两个问题的耦合是将视觉模型付诸实践的有前途的方向。
translated by 谷歌翻译
We introduce a conceptually simple and scalable framework for continual learning domains where tasks are learned sequentially. Our method is constant in the number of parameters and is designed to preserve performance on previously encountered tasks while accelerating learning progress on subsequent problems. This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task. After learning a new task, the active column is distilled into the knowledge base, taking care to protect any previously acquired skills. This cycle of active learning (progression) followed by consolidation (compression) requires no architecture growth, no access to or storing of previous data or tasks, and no task-specific parameters. We demonstrate the progress & compress approach on sequential classification of handwritten alphabets as well as two reinforcement learning domains: Atari games and 3D maze navigation.
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
持续的学习方法通​​过试图解决灾难性遗忘来帮助深度神经网络模型适应和逐步学习。但是,无论这些现有方法是否传统上应用于基于图像的任务,都具有与移动或嵌入式传感系统生成的顺序时间序列数据相同的疗效仍然是一个未解决的问题。为了解决这一空白,我们进行了第一项全面的经验研究,该研究量化了三个主要的持续学习方案的性能(即,在三个移动和嵌入式感应应用程序中的六个数据集中的三个主要的持续学习方案(即正规化,重播和重播)的性能。不同的学习复杂性。更具体地说,我们在Edge设备上实现了端到端连续学习框架。然后,我们研究了不同持续学习方法的性能,存储,计算成本和记忆足迹之间的普遍性,权衡。我们的发现表明,以示例性计划(例如ICARL)重播,即使在复杂的场景中,甚至在复杂的场景中都具有最佳的性能权衡,以牺牲一些存储空间(少数MB)来训练示例(1%至5%)。我们还首次证明,以有限的记忆预算进行连续学习,可行和实用。特别是,两种类型的移动设备和嵌入式设备的延迟表明,可以接受递增的学习时间(几秒钟-4分钟)和培训时间(1-75分钟),可以接受,因为嵌入式嵌入式时可能会在设备上进行培训设备正在充电,从而确保完整的数据隐私。最后,我们为希望将不断学习范式应用于移动传感任务的从业者提供了一些准则。
translated by 谷歌翻译
模块化是持续学习(CL)的令人信服的解决方案,是相关任务建模的问题。学习和组合模块来解决不同的任务提供了一种抽象来解决CL的主要挑战,包括灾难性的遗忘,向后和向前传输跨任务以及子线性模型的增长。我们引入本地模块组成(LMC),该方法是模块化CL的方法,其中每个模块都提供了局部结构组件,其估计模块与输入的相关性。基于本地相关评分进行动态模块组合。我们展示了对任务身份(IDS)的不可知性来自(本地)结构学习,该结构学习是特定于模块和/或模型特定于以前的作品,使LMC适用于与以前的作品相比的更多CL设置。此外,LMC还跟踪输入分布的统计信息,并在检测到异常样本时添加新模块。在第一组实验中,LMC与最近的持续转移学习基准上的现有方法相比,不需要任务标识。在另一个研究中,我们表明结构学习的局部性允许LMC插入相关但未遵守的任务(OOD),以及在不同任务序列上独立于不同的任务序列培训的模块化网络,而无需任何微调。最后,在寻找LMC的限制,我们在30和100个任务的更具挑战性序列上研究它,展示了本地模块选择在存在大量候选模块时变得更具挑战性。在此设置中,与Oracle基准的基线相比,最佳执行LMC产生的模块更少,但它达到了较低的总体精度。 CodeBase可在https://github.com/oleksost/lmc下找到。
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
当在具有不同分布的数据集上不断学习时,神经网络往往会忘记以前学习的知识,这一现象被称为灾难性遗忘。数据集之间的分配更改会导致更多的遗忘。最近,基于参数 - 隔离的方法在克服遗忘时具有巨大的潜力。但是,当他们在培训过程中修复每个数据集的神经路径时,他们的概括不佳,并且在推断过程中需要数据集标签。此外,他们不支持向后的知识转移,因为它们优先于过去的数据。在本文中,我们提出了一种名为ADAPTCL的新的自适应学习方法,该方法完全重复使用并在学习的参数上生长,以克服灾难性的遗忘,并允许在不需要数据集标签的情况下进行积极的向后传输。我们提出的技术通过允许最佳的冷冻参数重复使用在相同的神经路径上生长。此外,它使用参数级数据驱动的修剪来为数据分配同等优先级。我们对MNIST变体,域和食物新鲜度检测数据集进行了广泛的实验,而无需数据集标签。结果表明,我们所提出的方法优于替代基线,可以最大程度地减少遗忘和实现积极的向后知识转移。
translated by 谷歌翻译
本文研究了在连续学习框架中使用分类网络的固定架构培训深度学习模型的优化算法的新设计。训练数据是非平稳的,非平稳性是由一系列不同的任务施加的。我们首先分析了一个仅在隔离的学习任务的深层模型,并在网络参数空间中识别一个区域,其中模型性能接近恢复的最佳。我们提供的经验证据表明该区域类似于沿收敛方向扩展的锥体。我们研究了融合后优化器轨迹的主要方向,并表明沿着一些顶级主要方向旅行可以迅速将参数带到锥体之外,但其余方向并非如此。我们认为,当参数被限制以保持在训练过程中迄今为止遇到的单个任务的相交中,可以缓解持续学习环境中的灾难性遗忘。基于此观察结果,我们介绍了我们的方向约束优化(DCO)方法,在每个任务中,我们引入一个线性自动编码器以近似其相应的顶部禁止主要方向。然后将它们以正规化术语的形式合并到损失函数中,以便在不忘记的情况下学习即将到来的任务。此外,为了随着任务数量的增加而控制内存的增长,我们提出了一种称为压缩DCO(DCO-comp)的算法的内存效率版本,该版本为存储所有自动编码器的固定大小分配了存储器。我们从经验上证明,与其他基于最新正规化的持续学习方法相比,我们的算法表现出色。
translated by 谷歌翻译