我们探索如何利用神经辐射字段(NERF)来构建来自大型视觉捕获的跨越建筑物的交互式3D环境,甚至主要从遗工数据收集的多个城市块。与传统上NERFS传统评估的单个对象场景相比,该设置造成了多种挑战,包括(1)需要包含具有不同照明条件的数千个图像的需要,所有这些都是仅捕获场景的一个小子集(2 )通过在单个GPU上可以胆怯地培训的内容高度验证,(3)预先强化所有相关信息的任意大量可能的观点(作为实时NERF渲染器通常做的所有相关信息)。为了解决这些挑战,我们首先分析了大规模场景的可见度统计数据,激励了稀疏网络结构,其中参数专门从事场景的不同区域。我们介绍一个简单的几何聚类算法,将训练图像(或相当像素)分区为可以并行培训的不同NERF子模块。我们在跨越6K和Urbanscene3D数据集中采取的场景中评估我们的方法以及对我们自己的无人机镜头以及3倍培训加速,同时平均提高PSNR以上超过11%。我们随后对Mega-Nerf的顶部进行了近期NERF快速渲染器的实证评估,并引入了一种利用时间一致性的新方法。我们的技术通过传统的NERF渲染实现了40倍的加速,同时在PSNR质量下剩余0.5 dB,超过现有快速渲染器的保真度。
translated by 谷歌翻译
We introduce a method to render Neural Radiance Fields (NeRFs) in real time using PlenOctrees, an octree-based 3D representation which supports view-dependent effects. Our method can render 800×800 images at more than 150 FPS, which is over 3000 times faster than conventional NeRFs. We do so without sacrificing quality while preserving the ability of NeRFs to perform free-viewpoint rendering of scenes with arbitrary geometry and view-dependent effects. Real-time performance is achieved by pre-tabulating the NeRF into a PlenOctree. In order to preserve viewdependent effects such as specularities, we factorize the appearance via closed-form spherical basis functions. Specifically, we show that it is possible to train NeRFs to predict a spherical harmonic representation of radiance, removing the viewing direction as an input to the neural network. Furthermore, we show that PlenOctrees can be directly optimized to further minimize the reconstruction loss, which leads to equal or better quality compared to competing methods. Moreover, this octree optimization step can be used to reduce the training time, as we no longer need to wait for the NeRF training to converge fully. Our real-time neural rendering approach may potentially enable new applications such as 6-DOF industrial and product visualizations, as well as next generation AR/VR systems. PlenOctrees are amenable to in-browser rendering as well; please visit the project page for the interactive online demo, as well as video and code: https://alexyu. net/plenoctrees.
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译
我们介绍了Plenoxels(plenoptic voxels),是一种光电型观测合成系统。Plenoxels表示作为具有球形谐波的稀疏3D网格的场景。该表示可以通过梯度方法和正则化从校准图像进行优化,而没有任何神经元件。在标准,基准任务中,Plenoxels优化了比神经辐射场更快的两个数量级,无需视觉质量损失。
translated by 谷歌翻译
神经辐射场(NERF)最近在新型视图合成中取得了令人印象深刻的结果。但是,以前的NERF作品主要关注以对象为中心的方案。在这项工作中,我们提出了360ROAM,这是一种新颖的场景级NERF系统,可以实时合成大型室内场景的图像并支持VR漫游。我们的系统首先从多个输入$ 360^\ circ $图像构建全向神经辐射场360NERF。然后,我们逐步估算一个3D概率的占用图,该概率占用图代表了空间密度形式的场景几何形状。跳过空的空间和上采样占据的体素本质上可以使我们通过以几何学意识的方式使用360NERF加速量渲染。此外,我们使用自适应划分和扭曲策略来减少和调整辐射场,以进一步改进。从占用地图中提取的场景的平面图可以为射线采样提供指导,并促进现实的漫游体验。为了显示我们系统的功效,我们在各种场景中收集了$ 360^\ Circ $图像数据集并进行广泛的实验。基线之间的定量和定性比较说明了我们在复杂室内场景的新型视图合成中的主要表现。
translated by 谷歌翻译
3D reconstruction and novel view synthesis of dynamic scenes from collections of single views recently gained increased attention. Existing work shows impressive results for synthetic setups and forward-facing real-world data, but is severely limited in the training speed and angular range for generating novel views. This paper addresses these limitations and proposes a new method for full 360{\deg} novel view synthesis of non-rigidly deforming scenes. At the core of our method are: 1) An efficient deformation module that decouples the processing of spatial and temporal information for acceleration at training and inference time; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field. We evaluate the proposed approach on the established synthetic D-NeRF benchmark, that enables efficient reconstruction from a single monocular view per time-frame randomly sampled from a full hemisphere. We refer to this form of inputs as monocularized data. To prove its practicality for real-world scenarios, we recorded twelve challenging sequences with human actors by sampling single frames from a synchronized multi-view rig. In both cases, our method is trained significantly faster than previous methods (minutes instead of days) while achieving higher visual accuracy for generated novel views. Our source code and data is available at our project page https://graphics.tu-bs.de/publications/kappel2022fast.
translated by 谷歌翻译
NeRF synthesizes novel views of a scene with unprecedented quality by fitting a neural radiance field to RGB images. However, NeRF requires querying a deep Multi-Layer Perceptron (MLP) millions of times, leading to slow rendering times, even on modern GPUs. In this paper, we demonstrate that real-time rendering is possible by utilizing thousands of tiny MLPs instead of one single large MLP. In our setting, each individual MLP only needs to represent parts of the scene, thus smaller and faster-to-evaluate MLPs can be used. By combining this divide-and-conquer strategy with further optimizations, rendering is accelerated by three orders of magnitude compared to the original NeRF model without incurring high storage costs. Further, using teacher-student distillation for training, we show that this speed-up can be achieved without sacrificing visual quality.
translated by 谷歌翻译
神经辐射场(NERF)是数据驱动3D重建中的流行方法。鉴于其简单性和高质量的渲染,正在开发许多NERF应用程序。但是,NERF的大量的速度很大。许多尝试如何加速NERF培训和推理,包括复杂的代码级优化和缓存,使用复杂的数据结构以及通过多任务和元学习的摊销。在这项工作中,我们通过NERF之前通过经典技术镜头重新审视NERF的基本构建块。我们提出了Voxel-Accelated Nerf(VaxnerF),与Visual Hull集成了Nerf,一种经典的3D重建技术,只需要每张图像的二进制前景背景像素标签。可视船体,可在大约10秒内优化,可以提供粗略的现场分离,以省略NERF中的大量网络评估。我们在流行的JAXNERF Codebase提供了一个干净的全力验光,基于JAX的实现,其仅包括大约30行的代码更改和模块化视觉船体子程序,并在高度表现的JAXNERF之上实现了大约2-8倍的速度学习基线具有零劣化呈现质量。具有足够的计算,这有效地将单位训练从小时到30分钟缩小到30分钟。我们希望VAXNERF - 一种仔细组合具有深入方法的经典技术(可谓更换它) - 可以赋予并加速新的NERF扩展和应用,以其简单,可移植性和可靠的性能收益。代码在https://github.com/naruya/vaxnerf提供。
translated by 谷歌翻译
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model the density and color of a scene as a function of 3D coordinates. While NeRF works well on images of static subjects captured under controlled settings, it is incapable of modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable illumination or transient occluders. We introduce a series of extensions to NeRF to address these issues, thereby enabling accurate reconstructions from unstructured image collections taken from the internet. We apply our system, dubbed NeRF-W, to internet photo collections of famous landmarks, and demonstrate temporally consistent novel view renderings that are significantly closer to photorealism than the prior state of the art.
translated by 谷歌翻译
Volumetric neural rendering methods like NeRF generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism. The experiments on the DTU, the NeRF Synthetics , the ScanNet and the Tanks and Temples datasets demonstrate Point-NeRF can surpass the existing methods and achieve the state-of-the-art results.
translated by 谷歌翻译
我们提出了一种可区分的渲染算法,以进行有效的新型视图合成。通过偏离基于音量的表示,支持学习点表示,我们在训练和推理方面的内存和运行时范围内改进了现有方法的数量级。该方法从均匀采样的随机点云开始,并使用基于可区分的SPLAT渲染器来发展模型以匹配一组输入图像,从而学习了每点位置和观看依赖性外观。在训练和推理中,我们的方法比NERF快300倍,质量只有边缘牺牲,而在静态场景中使用少于10 〜MB的记忆。对于动态场景,我们的方法比Stnerf训练两个数量级,并以接近互动速率渲染,同时即使在不施加任何时间固定的正则化合物的情况下保持较高的图像质量和时间连贯性。
translated by 谷歌翻译
我们提出了逐渐变化的辐射场(PDRF),这是一种从模糊图像中有效重建高质量辐射场的新方法。虽然当前的最先进的(SOTA)场景重建方法实现了光真实的渲染,因此清洁源视图会导致其性能在源视图受模糊影响的影响时会受到影响,这通常是野外图像的观察。以前的脱毛方法要么不考虑3D几何形状,要么是计算强度。为了解决这些问题,PDRF是Radiance Field建模中逐渐消除的方案,通过合并3D场景上下文来准确地模拟模糊。 PDRF进一步使用了有效的重要性采样方案,从而导致快速场景优化。具体而言,PDRF提出了一个粗射线渲染器,以快速估计体素密度和特征。然后,使用精细的体素渲染器来实现高质量的射线追踪。我们执行广泛的实验,并表明PDRF比以前的SOTA快15倍,同时在合成场景和真实场景上都取得更好的性能。
translated by 谷歌翻译
神经辐射场(NERFS)增加了新型视图合成和场景重建的重建细节,其应用程序从大型静态场景到动态人类运动不等。但是,此类神经领域的分辨率和无模型性质的增加是以高训练时间和过度记忆要求为代价的。最近的进步通过使用互补的数据结构改善了推理时间,但这些方法不适合动态场景,并且通常会增加记忆消耗。减少培训时所需的资源几乎没有做到。我们提出了一种方法,通过部分共享相邻样本点的评估来利用NERF基于样本的计算的冗余。我们的UNERF体系结构的灵感来自UNET,该架构在网络中间减少空间分辨率,并在相邻样本之间共享信息。尽管这种变化违反了NERF方法中的严格和有意识的依赖性外观和无关的密度估计的分离,但我们表明它改善了新型观点的综合。我们还引入了一种替代性亚采样策略,该策略共享计算,同时最大程度地减少视图不变性的侵犯。 UNERF是原始NERF网络的插件模块。我们的主要贡献包括减少记忆足迹,提高准确性以及在训练和推理期间摊销的处理时间减少。在当地的假设较弱的情况下,我们在各种神经辐射场任务上实现了改进的资源利用。我们演示了对静态场景的新观点综合以及动态人类形状和运动的应用。
translated by 谷歌翻译
神经辐射场(NERF)在代表3D场景和合成新颖视图中示出了很大的潜力,但是在推理阶段的NERF的计算开销仍然很重。为了减轻负担,我们进入了NERF的粗细分,分层采样过程,并指出粗阶段可以被我们命名神经样本场的轻量级模块代替。所提出的示例场地图光线进入样本分布,可以将其转换为点坐标并进料到radiance字段以进行体积渲染。整体框架被命名为Neusample。我们在现实合成360 $ ^ {\ circ} $和真正的前瞻性,两个流行的3D场景集上进行实验,并表明Neusample在享受更快推理速度时比NERF实现更好的渲染质量。Neusample进一步压缩,以提出的样品场提取方法朝向质量和速度之间的更好的权衡。
translated by 谷歌翻译
虽然神经辐射场(NERF)已经证明了令人印象深刻的视图合成结果对物体和小型空间区域的结果,但它们在“无界”场景上挣扎,其中相机可以在任何方向上点,并且内容在任何距离处都存在。在此设置中,现有的形式的类似形式模型通常会产生模糊或低分辨率渲染(由于附近和远处物体的不平衡细节和规模),慢慢训练,并且由于任务的固有歧义而可能表现出伪影从一小部分图像重建大场景。我们介绍了MIP-NERF(一个NERF变体,用于解决采样和混叠的NERF变体),其使用非线性场景参数化,在线蒸馏和基于新的失真的常规程序来克服无限性场景所呈现的挑战。我们的模型,我们将“MIP-NERF 360”为瞄准相机围绕一点旋转360度的瞄准场景,与MIP NERF相比将平均平方误差减少54%,并且能够产生逼真的合成视图和用于高度复杂,无限性的现实景区的详细深度图。
translated by 谷歌翻译
本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
最近,神经辐射场(NERF)正在彻底改变新型视图合成(NVS)的卓越性能。但是,NERF及其变体通常需要进行冗长的每场训练程序,其中将多层感知器(MLP)拟合到捕获的图像中。为了解决挑战,已经提出了体素网格表示,以显着加快训练的速度。但是,这些现有方法只能处理静态场景。如何开发有效,准确的动态视图合成方法仍然是一个开放的问题。将静态场景的方法扩展到动态场景并不简单,因为场景几何形状和外观随时间变化。在本文中,基于素素网格优化的最新进展,我们提出了一种快速变形的辐射场方法来处理动态场景。我们的方法由两个模块组成。第一个模块采用变形网格来存储3D动态功能,以及使用插值功能将观测空间中的3D点映射到规范空间的变形的轻巧MLP。第二个模块包含密度和颜色网格,以建模场景的几何形状和密度。明确对阻塞进行了建模,以进一步提高渲染质量。实验结果表明,我们的方法仅使用20分钟的训练就可以实现与D-NERF相当的性能,该训练比D-NERF快70倍以上,这清楚地证明了我们提出的方法的效率。
translated by 谷歌翻译
我们呈现NERF-SR,一种用于高分辨率(HR)新型视图合成的解决方案,主要是低分辨率(LR)输入。我们的方法是基于神经辐射场(NERF)的内置,其预测每点密度和颜色,具有多层的射击。在在任意尺度上产生图像时,NERF与超越观察图像的分辨率努力。我们的关键识别是NERF具有本地之前的,这意味着可以在附近区域传播3D点的预测,并且保持准确。我们首先通过超级采样策略来利用它,该策略在每个图像像素处射击多个光线,这在子像素级别强制了多视图约束。然后,我们表明,NERF-SR可以通过改进网络进一步提高超级采样的性能,该细化网络利用估计的深度来实现HR参考图像上的相关补丁的幻觉。实验结果表明,NERF-SR在合成和现实世界数据集的HR上为新型视图合成产生高质量结果。
translated by 谷歌翻译
神经辐射场(NERFS)产生最先进的视图合成结果。然而,它们慢渲染,需要每像素数百个网络评估,以近似卷渲染积分。将nerfs烘烤到明确的数据结构中实现了有效的渲染,但导致内存占地面积的大幅增加,并且在许多情况下,质量降低。在本文中,我们提出了一种新的神经光场表示,相反,相反,紧凑,直接预测沿线的集成光线。我们的方法支持使用每个像素的单个网络评估,用于小基线光场数据集,也可以应用于每个像素的几个评估的较大基线。在我们的方法的核心,是一个光线空间嵌入网络,将4D射线空间歧管映射到中间可间可动子的潜在空间中。我们的方法在诸如斯坦福光场数据集等密集的前置数据集中实现了最先进的质量。此外,对于带有稀疏输入的面对面的场景,我们可以在质量方面实现对基于NERF的方法具有竞争力的结果,同时提供更好的速度/质量/内存权衡,网络评估较少。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译