本文旨在减少透明辐射场的渲染时间。一些最近的作品用图像编码器配备了神经辐射字段,能够跨越场景概括,这避免了每场景优化。但是,它们的渲染过程通常很慢。主要因素是,在推断辐射场时,它们在空间中的大量点。在本文中,我们介绍了一个混合场景表示,它结合了最佳的隐式辐射场和显式深度映射,以便有效渲染。具体地,我们首先构建级联成本量,以有效地预测场景的粗糙几何形状。粗糙几何允许我们在场景表面附近的几个点来样,并显着提高渲染速度。该过程是完全可疑的,使我们能够仅从RGB图像共同学习深度预测和辐射现场网络。实验表明,该方法在DTU,真正的前瞻性和NERF合成数据集上展示了最先进的性能,而不是比以前的最可推广的辐射现场方法快至少50倍。我们还展示了我们的方法实时综合动态人类执行者的自由观点视频。代码将在https://zju3dv.github.io/enerf/处提供。
translated by 谷歌翻译
潜水员在NERF的关键思想和其变体 - 密度模型和体积渲染的关键思想中建立 - 学习可以从少量图像实际渲染的3D对象模型。与所有先前的NERF方法相比,潜水员使用确定性而不是体积渲染积分的随机估计。潜水员的表示是基于体素的功能领域。为了计算卷渲染积分,将光线分为间隔,每个体素;使用MLP的每个间隔的特征估计体渲染积分的组件,并且组件聚合。结果,潜水员可以呈现其他集成商错过的薄半透明结构。此外,潜水员的表示与其他这样的方法相比相对暴露的语义 - 在体素空间中的运动特征向量导致自然编辑。对当前最先进的方法的广泛定性和定量比较表明,潜水员产生(1)在最先进的质量或高于最先进的质量,(2)的情况下非常小而不会被烘烤,(3)在不被烘烤的情况下渲染非常快,并且(4)可以以自然方式编辑。
translated by 谷歌翻译
我们呈现高动态范围神经辐射字段(HDR-NERF),以从一组低动态范围(LDR)视图的HDR辐射率字段与不同的曝光。使用HDR-NERF,我们能够在不同的曝光下生成新的HDR视图和新型LDR视图。我们方法的关键是模拟物理成像过程,该过程决定了场景点的辐射与具有两个隐式功能的LDR图像中的像素值转换为:RADIACE字段和音调映射器。辐射场对场景辐射(值在0到+末端之间的值变化),其通过提供相应的射线源和光线方向来输出光线的密度和辐射。 TONE MAPPER模拟映射过程,即在相机传感器上击中的光线变为像素值。通过将辐射和相应的曝光时间送入音调映射器来预测光线的颜色。我们使用经典的卷渲染技术将输出辐射,颜色和密度投影为HDR和LDR图像,同时只使用输入的LDR图像作为监控。我们收集了一个新的前瞻性的HDR数据集,以评估所提出的方法。综合性和现实世界场景的实验结果验证了我们的方法不仅可以准确控制合成视图的曝光,还可以用高动态范围呈现视图。
translated by 谷歌翻译
神经辐射场(NERF)是数据驱动3D重建中的流行方法。鉴于其简单性和高质量的渲染,正在开发许多NERF应用程序。但是,NERF的大量的速度很大。许多尝试如何加速NERF培训和推理,包括复杂的代码级优化和缓存,使用复杂的数据结构以及通过多任务和元学习的摊销。在这项工作中,我们通过NERF之前通过经典技术镜头重新审视NERF的基本构建块。我们提出了Voxel-Accelated Nerf(VaxnerF),与Visual Hull集成了Nerf,一种经典的3D重建技术,只需要每张图像的二进制前景背景像素标签。可视船体,可在大约10秒内优化,可以提供粗略的现场分离,以省略NERF中的大量网络评估。我们在流行的JAXNERF Codebase提供了一个干净的全力验光,基于JAX的实现,其仅包括大约30行的代码更改和模块化视觉船体子程序,并在高度表现的JAXNERF之上实现了大约2-8倍的速度学习基线具有零劣化呈现质量。具有足够的计算,这有效地将单位训练从小时到30分钟缩小到30分钟。我们希望VAXNERF - 一种仔细组合具有深入方法的经典技术(可谓更换它) - 可以赋予并加速新的NERF扩展和应用,以其简单,可移植性和可靠的性能收益。代码在https://github.com/naruya/vaxnerf提供。
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
神经辐射场(NERFS)产生最先进的视图合成结果。然而,它们慢渲染,需要每像素数百个网络评估,以近似卷渲染积分。将nerfs烘烤到明确的数据结构中实现了有效的渲染,但导致内存占地面积的大幅增加,并且在许多情况下,质量降低。在本文中,我们提出了一种新的神经光场表示,相反,相反,紧凑,直接预测沿线的集成光线。我们的方法支持使用每个像素的单个网络评估,用于小基线光场数据集,也可以应用于每个像素的几个评估的较大基线。在我们的方法的核心,是一个光线空间嵌入网络,将4D射线空间歧管映射到中间可间可动子的潜在空间中。我们的方法在诸如斯坦福光场数据集等密集的前置数据集中实现了最先进的质量。此外,对于带有稀疏输入的面对面的场景,我们可以在质量方面实现对基于NERF的方法具有竞争力的结果,同时提供更好的速度/质量/内存权衡,网络评估较少。
translated by 谷歌翻译
我们呈现Geonerf,一种基于神经辐射场的完全光电素质性新颖性研究综合方法。我们的方法由两个主要阶段组成:几何推理和渲染器。为了渲染新颖的视图,几何件推理首先为每个附近的源视图构造级联成本卷。然后,使用基于变压器的注意力机制和级联成本卷,渲染器Infers的几何和外观,并通过经典音量渲染技术呈现细节的图像。特别是该架构允许复杂的遮挡推理,从一致的源视图中收集信息。此外,我们的方法可以在单个场景中轻松进行微调,通过每场比较优化的神经渲染方法呈现竞争结果,其数量是计算成本。实验表明,Geonerf优于各种合成和实时数据集的最先进的最新神经渲染模型。最后,随着对几何推理的略微修改,我们还提出了一种适应RGBD图像的替代模型。由于深度传感器,该模型通常直接利用经常使用的深度信息。实施代码将公开可用。
translated by 谷歌翻译
我们提出了一种基于神经隐式表示的少量新型视图综合信息 - 理论正规化技术。所提出的方法最小化由于在每个光线中强制密度的熵约束而发生的潜在的重建不一致。另外,当从几乎冗余的观点获取所有训练图像时,为了减轻潜在的退化问题,我们还通过限制来自一对略微不同观点的光线的信息增益来将空间平滑度约束纳入估计的图像。我们的算法的主要思想是使重建的场景沿各个光线紧凑,并在附近的光线上一致。所提出的常规方基于Nerf以直接的方式插入大部分现有的神经体积渲染技术。尽管其简单性,但是,与现有的神经观察合成方法通过大量标准基准测试的现有神经观察方法相比,我们实现了一致的性能。我们的项目网站可用于\ url {http://cvlab.snu.ac.kr/research/infonerf}。
translated by 谷歌翻译
我们呈现NERF-SR,一种用于高分辨率(HR)新型视图合成的解决方案,主要是低分辨率(LR)输入。我们的方法是基于神经辐射场(NERF)的内置,其预测每点密度和颜色,具有多层的射击。在在任意尺度上产生图像时,NERF与超越观察图像的分辨率努力。我们的关键识别是NERF具有本地之前的,这意味着可以在附近区域传播3D点的预测,并且保持准确。我们首先通过超级采样策略来利用它,该策略在每个图像像素处射击多个光线,这在子像素级别强制了多视图约束。然后,我们表明,NERF-SR可以通过改进网络进一步提高超级采样的性能,该细化网络利用估计的深度来实现HR参考图像上的相关补丁的幻觉。实验结果表明,NERF-SR在合成和现实世界数据集的HR上为新型视图合成产生高质量结果。
translated by 谷歌翻译
由于其简单性和最先进的性能,神经辐射场(NERF)被出现为新型视图综合任务的强大表示。虽然NERF可以在许多输入视图可用时产生看不见的观点的光静观渲染,但是当该数量减少时,其性能显着下降。我们观察到,稀疏输入方案中的大多数伪像是由估计场景几何中的错误引起的,并且在训练开始时通过不同的行为引起。我们通过规范从未观察的视点呈现的修补程序的几何和外观来解决这一点,并在训练期间退火光线采样空间。我们还使用规范化的流模型来规范未观察的视点的颜色。我们的车型不仅优于优化单个场景的其他方法,而是在许多情况下,还有条件模型,这些模型在大型多视图数据集上广泛预先培训。
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
我们介绍了一种超快速的收敛方法来重建从一组图像中捕获具有已知姿势的场景的图像的每场辐射场。该任务通常适用于新颖的视图综合,最近是由神经辐射领域(NERF)彻底改革为其最先进的质量和灵活性。然而,NERF及其变体需要漫长的训练时间来为单个场景的数小时到几天。相比之下,我们的方法实现了NERF相当的质量,并通过单个GPU在不到15分钟内从划痕中迅速收敛。我们采用由密度体素网格组成的表示,用于场景几何形状和具有浅网络的特征体素网格,用于复杂的视图依赖性外观。用明确和离散化卷表示的建模并不是新的,但我们提出了两种简单而非琐碎的技术,有助于快速收敛速度和高质量的输出。首先,我们介绍了体素密度的激活后插值,其能够以较低的网格分辨率产生尖锐的表面。其次,直接体素密度优化容易发生次优几何解决方案,因此我们通过施加多个前沿来强制优化过程。最后,对五个内向的基准评估表明,我们的方法匹配,如果没有超越Nerf的质量,但它只需15分钟即可从头开始训练新场景。
translated by 谷歌翻译
我们介绍了Plenoxels(plenoptic voxels),是一种光电型观测合成系统。Plenoxels表示作为具有球形谐波的稀疏3D网格的场景。该表示可以通过梯度方法和正则化从校准图像进行优化,而没有任何神经元件。在标准,基准任务中,Plenoxels优化了比神经辐射场更快的两个数量级,无需视觉质量损失。
translated by 谷歌翻译
神经辐射字段(NERF)将场景编码为神经表示,使得能够实现新颖视图的照片逼真。然而,RGB图像的成功重建需要在静态条件下拍摄的大量输入视图 - 通常可以为房间尺寸场景的几百个图像。我们的方法旨在将整个房间的小说视图从数量级的图像中合成。为此,我们利用密集的深度前导者来限制NERF优化。首先,我们利用从用于估计相机姿势的运动(SFM)预处理步骤的结构自由提供的稀疏深度数据。其次,我们使用深度完成将这些稀疏点转换为密集的深度图和不确定性估计,用于指导NERF优化。我们的方法使数据有效的新颖观看综合在挑战室内场景中,使用少量为整个场景的18张图像。
translated by 谷歌翻译
我们提出了一种新的方法来获取来自在线图像集合的对象表示,从具有不同摄像机,照明和背景的照片捕获任意物体的高质量几何形状和材料属性。这使得各种以各种对象渲染应用诸如新颖的综合,致密和协调的背景组合物,从疯狂的内部输入。使用多级方法延伸神经辐射场,首先推断表面几何形状并优化粗估计的初始相机参数,同时利用粗糙的前景对象掩模来提高训练效率和几何质量。我们还介绍了一种强大的正常估计技术,其消除了几何噪声的效果,同时保持了重要细节。最后,我们提取表面材料特性和环境照明,以球形谐波表示,具有处理瞬态元素的延伸部,例如,锋利的阴影。这些组件的结合导致高度模块化和有效的对象采集框架。广泛的评估和比较证明了我们在捕获高质量的几何形状和外观特性方面的方法,可用于渲染应用。
translated by 谷歌翻译
使用神经领域的音量渲染在捕获和综合三维场景的新视图中表达了很大的希望。然而,这种类型的方法需要沿着每个观看光线在多个点处查询卷网络,以便呈现图像,从而导致非常慢的渲染时间。在本文中,我们提出了一种通过学习从相机光线到最有可能影响像素最终外观的光线的位置的直接映射来克服这种限制的方法。使用这种方法,我们能够渲染,培训和微调一个大量渲染的神经场模型,速度比标准方法快。与现有方法不同,我们的方法与一般卷一起工作,可以训练结束到底。
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译
我们研究了从3D对象组成的场景的稀疏源观察的新型视图综合的问题。我们提出了一种简单但有效的方法,既不是持续的也不是隐含的,挑战近期观测综合的趋势。我们的方法将观察显式编码为启用摊销渲染的体积表示。我们证明,虽然由于其表现力,但由于其表现力,但由于其富有力的力量,我们的简单方法获得了与最新的基线的比较比较了与最先进的基线的相当甚至更好的新颖性重建质量,同时增加了渲染速度超过400倍。我们的模型采用类别无关方式培训,不需要特定于场景的优化。因此,它能够将新颖的视图合成概括为在训练期间未见的对象类别。此外,我们表明,通过简单的制定,我们可以使用视图综合作为自我监控信号,以便在没有明确的3D监督的情况下高效学习3D几何。
translated by 谷歌翻译
由于其显着的合成质量,最近,神经辐射场(NERF)最近对3D场景重建和新颖的视图合成进行了相当大的关注。然而,由散焦或运动引起的图像模糊,这通常发生在野外的场景中,显着降低了其重建质量。为了解决这个问题,我们提出了DeBlur-nerf,这是一种可以从模糊输入恢复尖锐的nerf的第一种方法。我们采用逐合成方法来通过模拟模糊过程来重建模糊的视图,从而使NERF对模糊输入的鲁棒。该仿真的核心是一种新型可变形稀疏内核(DSK)模块,其通过在每个空间位置变形规范稀疏内核来模拟空间变形模糊内核。每个内核点的射线起源是共同优化的,受到物理模糊过程的启发。该模块作为MLP参数化,具有能够概括为各种模糊类型。联合优化NERF和DSK模块允许我们恢复尖锐的NERF。我们证明我们的方法可用于相机运动模糊和散焦模糊:真实场景中的两个最常见的模糊。合成和现实世界数据的评估结果表明,我们的方法优于几个基线。合成和真实数据集以及源代码将公开可用于促进未来的研究。
translated by 谷歌翻译
虽然神经辐射场(NERF)已经证明了令人印象深刻的视图合成结果对物体和小型空间区域的结果,但它们在“无界”场景上挣扎,其中相机可以在任何方向上点,并且内容在任何距离处都存在。在此设置中,现有的形式的类似形式模型通常会产生模糊或低分辨率渲染(由于附近和远处物体的不平衡细节和规模),慢慢训练,并且由于任务的固有歧义而可能表现出伪影从一小部分图像重建大场景。我们介绍了MIP-NERF(一个NERF变体,用于解决采样和混叠的NERF变体),其使用非线性场景参数化,在线蒸馏和基于新的失真的常规程序来克服无限性场景所呈现的挑战。我们的模型,我们将“MIP-NERF 360”为瞄准相机围绕一点旋转360度的瞄准场景,与MIP NERF相比将平均平方误差减少54%,并且能够产生逼真的合成视图和用于高度复杂,无限性的现实景区的详细深度图。
translated by 谷歌翻译