从Bosselut等人从彗星方法开始。(2019),直接从预训练的语言模型产生勤杂朗语言,最近受到了重大关注。令人惊讶的是,目前没有这种方式没有产生的勤义知识的物化资源是公开的。本文填补了这种差距,并利用了物化资源在精确和召回方面对这种方法的潜力进行了详细分析。此外,我们确定了常见问题的情况,并通过物化资源启用了概述使用案例。我们认为,这些资源的可用性对于领域的进步是重要的,因为它可以实现所产生的知识,进一步分析其优势和劣势。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)有助于AI应用程序。诸如ConceptNet之类的先前作品已经编译了大型CSK集合。但是,它们的表现力限制在主题性 - 预处理(SPO)的三联元中,对p和o的s和字符串的简单概念。与先前的作品相比,CSK断言具有精致的表现力和更好的精度和回忆。 Ascent ++通过用子组和方面捕获复合概念,以及用语义方面的主张来捕获复合概念。后者对于表达断言和进一步预选赛的时间和空间有效性至关重要。此外,Ascent ++将开放信息提取(OpenIE)与典型性和显着性分数的明智清洁和排名相结合。对于高覆盖范围,我们的方法挖掘到具有广泛的Web内容的大规模爬网C4中。通过人类判断的评估显示了上升++ Kb的卓越质量,以及对QA支持任务的外部评估强调了Ascent ++的好处。可以在https://ascentpp.mpi-inf.mpg.de/上访问Web界面,数据和代码。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)对AI应用程序(例如强大的聊天机器人)有用。诸如ConceptNet,Tuplekb和其他人之类的先前作品汇编了大型CSK集合,但在其表现力上限制了主题性主体对象(SPO)三倍(SPO)三元组,其中s和p和Onolithic的简单概念是P和O。这些项目都优先考虑精确精度。或召回,但几乎不能调和这些互补目标。本文介绍了一种称为Ascent的方法,以自动建立一个大规模的CSK断言的知识库(KB),具有高级表现力,并且比先前的作品更好,并且具有更好的精度和回忆。通过捕获子组和方面的复合概念,以及通过语义方面的主张来捕获复合概念,超越了三倍。后者对于表达断言和进一步预选赛的时间和空间有效性很重要。 Ascent使用语言模型将开放信息提取与明智的清洁结合在一起。内在评估显示了上升KB的较高规模和质量,QA支持任务的外部评估强调了上升的好处。可以在https://ascent.mpi-inf.mpg.de/上找到Web界面,数据和代码。
translated by 谷歌翻译
Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fillin-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-theart pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https: //github.com/facebookresearch/LAMA.
translated by 谷歌翻译
近年来带来了对自然语言理解领域的勤义代表和推理的重新兴趣。新的致辞知识图表(CSKG)的发展是这些进步的核心,因为他们的不同事实可以通过机器学习模型来解决新的和具有挑战性的任务。与此同时,由于全面地涵盖了一般勤杂朗知识所需的大规模规模,对这些资源的质量和覆盖率仍存在疑问。在这项工作中,我们将手动构建的CSKGS分配在NLP代理商遇到的所有情况下,我们将永远不会实现适用所需的覆盖范围。因此,我们提出了一种新的评估框架,用于测试KGS的效用,基于如何从中学习有效的隐式知识表示。通过这一新目标,我们提出了一个含有知识的全新CSKG的新CSKG,该知识不容易获得预用的语言模型。我们与其他领先的CSKG相比,评估其属性,表现了对勤杂朗语言知识资源的第一个大规模对研究。接下来,我们显示原子2020更适合培训知识模型,可以为新的,看不见的实体和事件产生准确,代表知识。最后,通过人类评估,我们表明,尽管使用超过430倍的参数,但GPT-3(175B参数)的几次射击性能较低,而令人印象深刻,令人印象深刻,令人印象深刻,令人印象深刻,仍然低于原子型2020的巴特的知识模型。
translated by 谷歌翻译
关于日常概念的常识知识是AI应用程序的重要资产,例如问答和聊天机器人。最近,我们发现对结构化常识性知识库(CSKB)的构建越来越兴趣。人类常识的重要部分是关于不适用于概念的属性,而现有的CSKB仅存储正面陈述。此外,由于CSKB在开放世界的假设下运行,因此缺乏陈述被认为具有未知的真理,而不是无效。本文介绍了实现信息丰富的负相感陈述的不常见框架。给定目标概念,在CSKB中确定了可比较的概念,为此假定局部封闭世界的假设。这样,关于目标概念不存在的可比较概念的积极陈述成为负面陈述候选人的种子。然后,通过信息性审查,修剪和排名大量候选人。内在和外在评估表明,我们的方法明显优于最先进的方法。大量的信息否定数据集被释放为未来研究的资源。
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
人类使用自然语言来撰写普通概念,将他们的环境归结为合理的日常场景描述。然而,这种生成的致辞推理(GCSR)技能缺乏最先进的文本生成方法。关于由神经文本生成模型(例如,预先接受的文本到文本变压器)生成的任意概念的描述性句子通常是语法流畅的,但可能与人类常识不相符,这主要是由于它们缺乏捕获概念关系的机制识别隐式概念,并对看不见的概念组成来执行概括的推理。在本文中,我们提出了一种想象的 - 言语(I&V)方法,其学会在输入概念之间的关系中想象一个关系场景知识图(SKG),并在生成合理的场景描述时利用SKG作为约束。我们收集和协调来自不同领域和方式的一套知识资源,为I&v提供丰富的辅助监督信号。该实验展示了I&V在提高概念到句子和概念到故事的生成任务上的语言模型的有效性,同时使模型能够从更少的任务示例中学习并生成对人类注入者常识的SKG。
translated by 谷歌翻译
大型基于变压器的预训练的语言模型在各种知识密集的任务上取得了令人印象深刻的表现,并可以在其参数中捕获事实知识。我们认为,考虑到不断增长的知识和资源需求,在模型参数中存储大量知识是亚最佳选择。我们认为,更有效的替代方法是向模型提供对上下文相关的结构化知识的明确访问,并训练它以使用该知识。我们提出了LM核 - 实现这一目标的一般框架 - 允许从外部知识源对语言模型培训的\ textit {解耦},并允许后者更新而不会影响已经训练的模型。实验结果表明,LM核心获得外部知识,在知识探索任务上的最先进的知识增强语言模型中实现了重要而强大的优于性能。可以有效处理知识更新;并在两个下游任务上表现良好。我们还提出了一个彻底的错误分析,突出了LM核的成功和失败。
translated by 谷歌翻译
致致辞问题答案(CQA)旨在测试模型是否可以回答有关每个人都知道的勤杂朗语言的问题。结合外部知识库的事先作品已经显示了有希望的结果,但知识库是昂贵的构造,并且通常限于固定的一组关系。在本文中,我们专注于更好地利用\ Texit {隐式知识}存储在预先接受预先接受的语言模型中。虽然研究人员发现嵌入在预先接受预先训练的语言模型中的知识,但可以通过填写仔细设计的提取和文本分类的谨慎设计的空白来提取,但如果我们可以在输入和输入的CQA中采用此范例,仍然不清楚输出采取更灵活的形式。为此,我们调查了四种翻译方法,可以将自然问题转化为渗出风格的句子,从语言模型中更好地征求致辞知识,包括基于句法的模型,无监督的神经模型和两个监督的神经模型。此外,要结合不同的翻译方法,我们建议鼓励模型预测与未标记数据不同翻译问题的一致性。我们展示了我们在零拍摄设置中三个CQA数据集上的方法的有效性。我们表明,我们的方法与知识库改进的模型互补,并结合它们可以导致最先进的零射击性能。分析还揭示了不同的强化翻译方法的明显特征,并为什么结合它们导致巨大改进提供了洞察。
translated by 谷歌翻译
诸如“玻璃可以用于饮用水”之类的先决条件的推理仍然是语言模型的开放问题。主要的挑战在于,前提数据的稀缺性以及模型对这种推理的缺乏支持。我们提出了粉红色的,预处理性的推论,并通过弱监督进行了改进的模型,用于通过最低限度的监督来推理前提条件。我们从经验和理论上表明,粉红色改善了基准的结果,该基准的重点是通过常识性知识的前提(高达40%的宏F1分数)进行推理。我们通过Pac-Bayesian信息分析,精确度量和消融研究进一步研究粉红色。
translated by 谷歌翻译
在有问题的回答需要常识的问题上,语言模型(例如,GPT-3)已用于生成表达有助于提高性能的背景知识的文本。然而,使用此类模型的成本很高。在这项工作中,我们对较小的语言模型产生有用的中间上下文,此处称为阐述。我们的框架在更新两个语言模型之间交替使用 - 阐述生成器和一个答案预测变量 - 允许每个语言都影响彼此。我们的模型使用少于GPT-3的参数的0.5%优于具有相似尺寸的替代方案,并在四个常识性问题上回答基准测试的GPT-3上的差距缩小。人类评估表明,生成的阐述的质量很高。
translated by 谷歌翻译
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
translated by 谷歌翻译
我们调查使用图像中包含的多模式信息作为增强文本生成的变压器模型的勤义的有效方法。我们在概念到文本生成中使用BART和T5进行实验,特别是生成致辞推理或蒙的任务。我们称之为Visctg:视觉地基础的概念到文本生成。VisctG涉及代表适当日常方案的标题图像,并使用这些标题来丰富和转向生成过程。综合评估和分析表明,VisctG显着提高了模型性能,同时成功地解决了基线几代的几个问题,包括差的致辞,流畅性和特异性。
translated by 谷歌翻译
Storytelling and narrative are fundamental to human experience, intertwined with our social and cultural engagement. As such, researchers have long attempted to create systems that can generate stories automatically. In recent years, powered by deep learning and massive data resources, automatic story generation has shown significant advances. However, considerable challenges, like the need for global coherence in generated stories, still hamper generative models from reaching the same storytelling ability as human narrators. To tackle these challenges, many studies seek to inject structured knowledge into the generation process, which is referred to as structure knowledge-enhanced story generation. Incorporating external knowledge can enhance the logical coherence among story events, achieve better knowledge grounding, and alleviate over-generalization and repetition problems in stories. This survey provides the latest and comprehensive review of this research field: (i) we present a systematical taxonomy regarding how existing methods integrate structured knowledge into story generation; (ii) we summarize involved story corpora, structured knowledge datasets, and evaluation metrics; (iii) we give multidimensional insights into the challenges of knowledge-enhanced story generation and cast light on promising directions for future study.
translated by 谷歌翻译
拟人化是一种语音人物,它赋予无生命实体具有属性和行动,通常被视为需要动画。在本文中,我们探讨了人格化生成的任务。为此,我们提出了菠萝:通过获取平行的人格化数据来学习增强的产生,来拟人化无生命的实体。我们策划了一个名为PersonifCorp的拟人化语料库,并自动生成了这些拟人化的文字化。我们通过训练SEQ2SEQ模型来拟人化给定的文字输入,从而证明了该平行语料库的有用性。自动评估和人类评估都表明,通过人格科目进行微调会带来与人格化相关的素质(例如动画和兴趣)的显着提高。详细的定性分析还强调了菠萝在基准上的关键优势和瑕疵,表明具有强大的能力产生多样化和创造性的拟人化,从而增强了句子的整体吸引力。
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
语言模型(LMS)已被证明在各种下游应用程序中很有用,例如摘要,翻译,问答和文本分类。由于它们可以存储的大量信息,LMS正在成为人工智能中越来越重要的工具。在这项工作中,我们提出了道具(提示为探测),该道具利用GPT-3(最初由OpenAI在2020年提出的大型语言模型)来执行知识基础构建任务(KBC)。 Prop实施了一种多步骤方法,该方法结合了各种提示技术来实现这一目标。我们的结果表明,手动提示策划是必不可少的,必须鼓励LM给出可变长度的答案集,特别是包括空的答案集,True/False问题是提高LM生成的建议精度的有用设备。 LM的大小是至关重要的因素,并且实体字典别名提高了LM评分。我们的评估研究表明,这些提出的技术可以大大提高最终预测的质量:Prop赢得了LM-KBC竞争的轨道2,表现优于基线36.4个百分点。我们的实施可在https://github.com/hemile/iswc-challenge上获得。
translated by 谷歌翻译
这项研究调查了基于知识的问题产生的任务(KBQG)。传统的KBQG的作品从知识图中的FACT三元组中产生了问题,该问题无法表达复杂的操作,例如SPARQL中的聚合和比较。此外,由于大规模SPARQL问题对的昂贵注释,因此需要急切地探索SPARQL的KBQG,因此需要急切地探索SPARQL。最近,由于通常接受自然语言(NL)至NL范式培训的生成预训练的语言模型(PLM)已被证明对低资源生成有效,例如T5和Bart,如何有效地利用它们来生成NL - 非NL SPARQL的问题是具有挑战性的。为了应对这些挑战,提出了AutoQGS是SPARQL低资源KBQG的自动推出方法。首先,我们提出要直接从SPARQL生成问题,以处理KBQG任务以处理复杂的操作。其次,我们提出了一个对大规模无监督数据训练的自动档案,以将SPARQL重新描述为NL描述,从而平滑了从非NL SPARQL到NL问题的低资源转换。 WebQuestionsSP,ComlexWebQuestions 1.1和路径问题的实验结果表明,我们的模型可实现最新的性能,尤其是在低资源设置中。此外,为进一步的KBQG研究生成了330k Factoid复杂问题-SPARQL对的语料库。
translated by 谷歌翻译
在本文中,我们建议利用对话的独特特征,共享参与者的常识性知识,以解决总结它们的困难。我们提出了病态的框架,该框架使用常识推论作为其他背景。与以前仅依赖于输入对话的工作相比,Sick使用外部知识模型来生成丰富的常识推断,并选择具有基于相似性选择方法的最可能的推理。基于生病的,病人++的理解为监督,在总结多任务学习环境中的对话时,添加了产生常识推断的任务。实验结果表明,通过注入常识性知识,我们的框架比现有方法产生更多信息和一致的摘要。
translated by 谷歌翻译