Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
translated by 谷歌翻译
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that mixup improves the generalization of state-of-the-art neural network architectures. We also find that mixup reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
混合是一种数据增强方法,通过混合一对输入数据来生成新数据点。虽然混合通常会改善预测性能,但它有时会降低性能。在本文中,我们首先通过理论上和经验分析混合算法来确定这种现象的主要原因。要解决此问题,我们提出了一种简单但有效的重定标记算法,专为混合而提出了Genlabel。特别是,GenLabel通过使用生成模型学习类条件数据分布,帮助混合算法正确标记混合样本。通过广泛的理论和实证分析,我们表明混合,当与Genlabel一起使用时,可以有效地解决上述现象,从而提高泛化性能和对抗鲁棒性。
translated by 谷歌翻译
我们介绍了嘈杂的特征混音(NFM),这是一个廉价但有效的数据增强方法,这些方法结合了基于插值的训练和噪声注入方案。不是用凸面的示例和它们的标签的凸面组合训练,而不是在输入和特征空间中使用对数据点对的噪声扰动凸组合。该方法包括混合和歧管混合作为特殊情况,但它具有额外的优点,包括更好地平滑决策边界并实现改进的模型鲁棒性。我们提供理论要理解这一点以及NFM的隐式正则化效果。与混合和歧管混合相比,我们的理论得到了经验结果的支持,展示了NFM的优势。我们表明,在一系列计算机视觉基准数据集中,使用NFM培训的剩余网络和视觉变压器在清洁数据的预测准确性和鲁棒性之间具有有利的权衡。
translated by 谷歌翻译
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
随机平滑是目前是最先进的方法,用于构建来自Neural Networks的可认真稳健的分类器,以防止$ \ ell_2 $ - vitersarial扰动。在范例下,分类器的稳健性与预测置信度对齐,即,对平滑分类器的较高的置信性意味着更好的鲁棒性。这使我们能够在校准平滑分类器的信仰方面重新思考准确性和鲁棒性之间的基本权衡。在本文中,我们提出了一种简单的训练方案,Coined Spiremix,通过自我混合来控制平滑分类器的鲁棒性:它沿着每个输入对逆势扰动方向进行样品的凸起组合。该提出的程序有效地识别过度自信,在平滑分类器的情况下,作为有限的稳健性的原因,并提供了一种直观的方法来自适应地在这些样本之间设置新的决策边界,以实现更好的鲁棒性。我们的实验结果表明,与现有的最先进的强大培训方法相比,该方法可以显着提高平滑分类器的认证$ \ ell_2 $ -toSpustness。
translated by 谷歌翻译
以前的工作提出了许多新的损失函数和常规程序,可提高图像分类任务的测试准确性。但是,目前尚不清楚这些损失函数是否了解下游任务的更好表示。本文研究了培训目标的选择如何影响卷积神经网络隐藏表示的可转移性,训练在想象中。我们展示了许多目标在Vanilla Softmax交叉熵上导致想象的精度有统计学意义的改进,但由此产生的固定特征提取器转移到下游任务基本较差,并且当网络完全微调时,损失的选择几乎没有效果新任务。使用居中内核对齐来测量网络隐藏表示之间的相似性,我们发现损失函数之间的差异仅在网络的最后几层中都很明显。我们深入了解倒数第二层的陈述,发现不同的目标和近奇计的组合导致大幅不同的类别分离。具有较高类别分离的表示可以在原始任务上获得更高的准确性,但它们的功能对于下游任务不太有用。我们的结果表明,用于原始任务的学习不变功能与传输任务相关的功能之间存在权衡。
translated by 谷歌翻译
已知神经网络容易受到对抗性攻击的影响 - 轻微但精心构建的输入扰动,这会造成巨大损害网络的性能。已经提出了许多防御方法来通过培训对抗对抗扰动的投入来改善深网络的稳健性。然而,这些模型通常仍然容易受到在训练期间没有看到的新类型的攻击,甚至在以前看到的攻击中稍微强大。在这项工作中,我们提出了一种新的对抗性稳健性的方法,这在域适应领域的见解中建立了洞察力。我们的方法称为对抗性特征脱敏(AFD),目的是学习功能,这些特征是不变的对输入的对抗扰动。这是通过游戏实现的,我们学习了预测和鲁棒(对对抗性攻击不敏感)的特征,即不能用于区分自然和对抗数据。若干基准测试的经验结果证明了提出的方法对广泛的攻击类型和攻击优势的有效性。我们的代码可在https://github.com/bashivanlab/afd获得。
translated by 谷歌翻译
It is common practice in deep learning to use overparameterized networks and train for as long as possible; there are numerous studies that show, both theoretically and empirically, that such practices surprisingly do not unduly harm the generalization performance of the classifier. In this paper, we empirically study this phenomenon in the setting of adversarially trained deep networks, which are trained to minimize the loss under worst-case adversarial perturbations. We find that overfitting to the training set does in fact harm robust performance to a very large degree in adversarially robust training across multiple datasets (SVHN, CIFAR-10, CIFAR-100, and ImageNet) and perturbation models ( ∞ and 2 ). Based upon this observed effect, we show that the performance gains of virtually all recent algorithmic improvements upon adversarial training can be matched by simply using early stopping. We also show that effects such as the double descent curve do still occur in adversarially trained models, yet fail to explain the observed overfitting. Finally, we study several classical and modern deep learning remedies for overfitting, including regularization and data augmentation, and find that no approach in isolation improves significantly upon the gains achieved by early stopping. All code for reproducing the experiments as well as pretrained model weights and training logs can be found at https://github.com/ locuslab/robust_overfitting.
translated by 谷歌翻译
几个数据增强方法部署了未标记的分配(UID)数据,以弥合神经网络的培训和推理之间的差距。然而,这些方法在UID数据的可用性方面具有明确的限制和伪标签上的算法的依赖性。在此,我们提出了一种数据增强方法,通过使用缺乏上述问题的分发(OOD)数据来改善对抗和标准学习的泛化。我们展示了如何在理论上使用每个学习场景中的数据来改进泛化,并通过Cifar-10,CiFar-100和ImageNet的子集进行化学理论分析。结果表明,即使在似乎与人类角度几乎没有相关的图像数据中也是不希望的特征。我们还通过与其他数据增强方法进行比较,介绍了所提出的方法的优点,这些方法可以在没有UID数据的情况下使用。此外,我们证明该方法可以进一步改善现有的最先进的对抗培训。
translated by 谷歌翻译
We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to non-square matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the state-of-the-art in terms of accuracy on CIFAR-10/100 and Street View House Numbers (SVHN), while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.
translated by 谷歌翻译
对抗性训练遭受了稳健的过度装备,这是一种现象,在训练期间鲁棒测试精度开始减少。在本文中,我们专注于通过使用常见的数据增强方案来减少强大的过度装备。我们证明,与先前的发现相反,当与模型重量平均结合时,数据增强可以显着提高鲁棒精度。此外,我们比较各种增强技术,并观察到空间组合技术适用于对抗性培训。最后,我们评估了我们在Cifar-10上的方法,而不是$ \ ell_ indty $和$ \ ell_2 $ norm-indeded扰动分别为尺寸$ \ epsilon = 8/255 $和$ \ epsilon = 128/255 $。与以前的最先进的方法相比,我们表现出+ 2.93%的绝对改善+ 2.93%,+ 2.16%。特别是,反对$ \ ell_ infty $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $,我们的模型达到60.07%的强劲准确性而不使用任何外部数据。我们还通过这种方法实现了显着的性能提升,同时使用其他架构和数据集如CiFar-100,SVHN和TinyimageNet。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
最近的工作认为,强大的培训需要比标准分类所需的数据集大得多。在CiFar-10和CiFar-100上,这转化为仅培训的型号之间的可稳健稳健精度差距,这些型号来自原始训练集的数据,那些从“80万微小图像”数据集(TI-80M)提取的附加数据培训。在本文中,我们探讨了单独培训的生成模型如何利用人为地提高原始训练集的大小,并改善对$ \ ell_p $ norm-inded扰动的对抗鲁棒性。我们确定了包含额外生成数据的充分条件可以改善鲁棒性,并证明可以显着降低具有额外实际数据训练的模型的强大准确性差距。令人惊讶的是,我们甚至表明即使增加了非现实的随机数据(由高斯采样产生)也可以改善鲁棒性。我们在Cifar-10,CiFar-100,SVHN和Tinyimagenet上评估我们的方法,而$ \ ell_ indty $和$ \ ell_2 $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $和$ \ epsilon = 128/255 $分别。与以前的最先进的方法相比,我们以强大的准确性显示出大的绝对改进。反对$ \ ell_ \ infty $ norm-indeded扰动尺寸$ \ epsilon = 8/255 $,我们的车型分别在Cifar-10和Cifar-100上达到66.10%和33.49%(改善状态)最新美术+ 8.96%和+ 3.29%)。反对$ \ ell_2 $ norm-indeded扰动尺寸$ \ epsilon = 128/255 $,我们的型号在Cifar-10(+ 3.81%)上实现78.31%。这些结果击败了使用外部数据的最先前的作品。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can seriously undermine the security of the system supported by the DNN, sometimes with devastating consequences. For example, autonomous vehicles can be crashed, illicit or illegal content can bypass content filters, or biometric authentication systems can be manipulated to allow improper access. In this work, we introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs. We analytically investigate the generalizability and robustness properties granted by the use of defensive distillation when training DNNs. We also empirically study the effectiveness of our defense mechanisms on two DNNs placed in adversarial settings. The study shows that defensive distillation can reduce effectiveness of sample creation from 95% to less than 0.5% on a studied DNN. Such dramatic gains can be explained by the fact that distillation leads gradients used in adversarial sample creation to be reduced by a factor of 10 30 . We also find that distillation increases the average minimum number of features that need to be modified to create adversarial samples by about 800% on one of the DNNs we tested.
translated by 谷歌翻译
深度神经网络易于对自然投入的离前事实制作,小而难以察觉的变化影响。对这些实例的最有效的防御机制是对逆脉训练在训练期间通过迭代最大化的损失来构建对抗性实例。然后训练该模型以最小化这些构建的实施例的损失。此最小最大优化需要更多数据,更大的容量模型和额外的计算资源。它还降低了模型的标准泛化性能。我们可以更有效地实现鲁棒性吗?在这项工作中,我们从知识转移的角度探讨了这个问题。首先,我们理论上展示了在混合增强的帮助下将鲁棒性从对接地训练的教师模型到学生模型的可转换性。其次,我们提出了一种新颖的鲁棒性转移方法,称为基于混合的激活信道图(MixacM)转移。 MixacM通过匹配未在没有昂贵的对抗扰动的匹配生成的激活频道地图将强大的教师转移到学生的鲁棒性。最后,对多个数据集的广泛实验和不同的学习情景显示我们的方法可以转移鲁棒性,同时还改善自然图像的概括。
translated by 谷歌翻译
混合是一种数据相关的正则化技术,其包括线性内插输入样本和相关输出。它已被证明在用于培训标准机器学习数据集时提高准确性。然而,作者已经指出,混合可以在增强训练集中产生分配的虚拟样本,甚至是矛盾,可能导致对抗效应。在本文中,我们介绍了当地混合,其中在计算损失时加权远处输入样本。在约束的环境中,我们证明了本地混合可以在偏差和方差之间产生权衡,极端情况降低了香草培训和古典混合。使用标准化的计算机视觉基准测试,我们还表明本地混合可以提高测试精度。
translated by 谷歌翻译
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models. However, it is conservative or even pessimistic so that it sometimes hurts the natural generalization. In this paper, we raise a fundamental question-do we have to trade off natural generalization for adversarial robustness? We argue that adversarial training is to employ confident adversarial data for updating the current model. We propose a novel formulation of friendly adversarial training (FAT): rather than employing most adversarial data maximizing the loss, we search for least adversarial data (i.e., friendly adversarial data) minimizing the loss, among the adversarial data that are confidently misclassified. Our novel formulation is easy to implement by just stopping the most adversarial data searching algorithms such as PGD (projected gradient descent) early, which we call early-stopped PGD. Theoretically, FAT is justified by an upper bound of the adversarial risk. Empirically, early-stopped PGD allows us to answer the earlier question negatively-adversarial robustness can indeed be achieved without compromising the natural generalization.* Equal contribution † Preliminary work was done during an internship at RIKEN AIP.
translated by 谷歌翻译