视觉变换器将每个图像分成具有固定长度的令牌序列,并以与自然语言处理中的单词相同的方式处理令牌。更多令牌通​​常会导致更好的性能,但计算成本显着增加。通过谚语“一张图片胜过千言万语”,我们的目标是通过制造长图像短而加速VIT模型。为此,我们提出了一种新颖的方法在推论期间自适应地分配令牌长度。具体而言,我们首先培养一种含有可调整化 - vit(Revit)的Vit模型,可以处理任何具有不同令牌长度的给定输入。然后,我们从Revit检索“令牌长度标签”,并使用它培训轻量级令牌长度分配(TLA)。令牌长度标签是最小的令牌,以分割Revit可以使REVIT可以进行正确的预测,并且学习TLA以基于这些标签分配最佳令牌长度。 TLA使REVIT能够在推理期间使用最小足够数量的令牌处理图像。因此,通过减少VIT模型中的令牌数字来提高推广速度。我们的方法是一般的,与现代视觉变压器架构兼容,可以显着减少计算扩展。我们在两个任务中验证了我们对多个代表性VIT模型(DEIT,LV-VIT和TIMESFRER)的效果(图像分类和动作识别)。
translated by 谷歌翻译
在本文中,我们通过利用视觉数据中的空间稀疏性提出了一种新的模型加速方法。我们观察到,视觉变压器中的最终预测仅基于最有用的令牌的子集,这足以使图像识别。基于此观察,我们提出了一个动态的令牌稀疏框架,以根据加速视觉变压器的输入逐渐和动态地修剪冗余令牌。具体而言,我们设计了一个轻量级预测模块,以估计给定当前功能的每个令牌的重要性得分。该模块被添加到不同的层中以层次修剪冗余令牌。尽管该框架的启发是我们观察到视觉变压器中稀疏注意力的启发,但我们发现自适应和不对称计算的想法可能是加速各种体系结构的一般解决方案。我们将我们的方法扩展到包括CNN和分层视觉变压器在内的层次模型,以及更复杂的密集预测任务,这些任务需要通过制定更通用的动态空间稀疏框架,并具有渐进性的稀疏性和非对称性计算,用于不同空间位置。通过将轻质快速路径应用于少量的特征,并使用更具表现力的慢速路径到更重要的位置,我们可以维护特征地图的结构,同时大大减少整体计算。广泛的实验证明了我们框架对各种现代体系结构和不同视觉识别任务的有效性。我们的结果清楚地表明,动态空间稀疏为模型加速提供了一个新的,更有效的维度。代码可从https://github.com/raoyongming/dynamicvit获得
translated by 谷歌翻译
视觉变压器(VITS)已成为各种视觉任务的流行结构和优于卷积神经网络(CNNS)。然而,这种强大的变形金机带来了巨大的计算负担。而这背后的基本障碍是排气的令牌到令牌比较。为了缓解这一点,我们深入研究Vit的模型属性,观察到VITS表现出稀疏关注,具有高令牌相似性。这直观地向我们介绍了可行的结构不可知的尺寸,令牌编号,以降低计算成本。基于这一探索,我们为香草vits提出了一种通用的自我切片学习方法,即坐下。具体而言,我们首先设计一种新颖的令牌减肥模块(TSM),可以通过动态令牌聚集来提高VIT的推理效率。不同于令牌硬滴,我们的TSM轻轻地集成了冗余令牌变成了更少的信息,可以在不切断图像中的鉴别性令牌关系的情况下动态缩放视觉注意。此外,我们介绍了一种简洁的密集知识蒸馏(DKD)框架,其密集地以柔性自动编码器方式传送无组织的令牌信息。由于教师和学生之间的结构类似,我们的框架可以有效地利用结构知识以获得更好的收敛性。最后,我们进行了广泛的实验来评估我们的坐姿。它展示了我们的方法可以通过1.7倍加速VITS,其精度下降可忽略不计,甚至在3.6倍上加速VITS,同时保持其性能的97%。令人惊讶的是,通过简单地武装LV-VIT与我们的坐线,我们在想象中实现了新的最先进的表现,超过了最近文学中的所有CNN和VITS。
translated by 谷歌翻译
视觉变压器(VIT)在计算机视觉任务中取得了许多突破。但是,输入图像的空间维度出现了相当大的冗余,导致了巨大的计算成本。因此,我们提出了一个粗糙的视觉变压器(CF-VIT),以减轻计算负担,同时在本文中保持绩效。我们提出的CF-VIT是由现代VIT模型中的两个重要观察结果激励的:(1)粗粒斑分裂可以找到输入图像的信息区域。 (2)大多数图像可以通过小型令牌序列中的VIT模型很好地识别。因此,我们的CF-Vit以两阶段的方式实现网络推断。在粗糙的推理阶段,输入图像分为一个小长度贴片序列,以进行计算经济分类。如果不公认的话,请确定信息斑块,并在细粒度的细粒度中进一步重新分解。广泛的实验证明了我们CF-VIT的功效。例如,在不妥协性能的情况下,CF-VIT可以减少53%的LV-VIT拖鞋,还可以达到2.01倍的吞吐量。
translated by 谷歌翻译
虽然最先进的视觉变压器模型实现了图像分类的有希望的结果,但它们是非常昂贵的并且需要许多GFLOPS。尽管可以通过减少网络中的令牌数量来降低视觉变压器的GFLOPS,但是没有对所有输入图像的最佳设置。因此,在这项工作中,我们引入了可分辨率的无参数自适应令牌采样(ATS)模块,可以插入任何现有的视觉变压器架构。通过评分和自适应采样重要令牌,在视觉变压器上实现视觉变压器。结果,令牌的数量不再静态,但是每个输入图像都变化。通过将ATS集成为当前变压器块内的附加层,我们可以将它们转换为具有自适应令牌的更高效的视觉变压器。由于ATS是一种无参数模块,因此它可以作为即插即用模块添加到从货架上的预制视觉变压器中,从而在没有任何额外训练的情况下减少他们的GFLOP。但是,由于其可分辨动的设计,人们还可以培训配有ATS的视觉变压器。通过将其添加到多个最先进的视觉变压器,我们在想象成数据集上进行评估。我们的评估表明,通过将计算成本(GFLOPS)降低37%,在保留准确性时,该模块通过降低了37%,提高了最先进的模块。
translated by 谷歌翻译
Vision Transformer已成为计算机视觉中的新范式,表现出出色的性能,同时还具有昂贵的计算成本。图像令牌修剪是VIT压缩的主要方法之一,这是因为相对于令牌数的复杂性是二次的,而许多仅包含背景区域的令牌并不能真正促进最终预测。现有作品要么依赖其他模块来评分单个令牌的重要性,要么为不同的输入实例实施固定比率修剪策略。在这项工作中,我们提出了一个自适应的稀疏令牌修剪框架,成本最低。我们的方法是基于可学习的阈值,并利用多头自我注意力来评估令牌信息,但几乎没有其他操作。具体而言,我们首先提出了廉价的注意力重点加权阶级注意力评分机制。然后,将可学习的参数插入VIT作为阈值,以区分信息令牌和不重要的令牌。通过比较令牌注意分数和阈值,我们可以从层次上丢弃无用的令牌,从而加速推理。可学习的阈值在预算感知培训中进行了优化,以平衡准确性和复杂性,并为不同的输入实例执行相应的修剪配置。广泛的实验证明了我们方法的有效性。例如,我们的方法将DEIT-S的吞吐量提高了50%,并且TOP-1的准确性仅下降了0.2%,这比以前的方法在准确性和延迟之间取得了更好的权衡。
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolution-free transformers by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.
translated by 谷歌翻译
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These highperforming vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.In this work, we produce competitive convolutionfree transformers trained on ImageNet only using a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.We also introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention, typically from a convnet teacher. The learned transformers are competitive (85.2% top-1 acc.) with the state of the art on ImageNet, and similarly when transferred to other tasks. We will share our code and models.
translated by 谷歌翻译
变形金刚在自然语言处理方面取得了巨大的成功。由于变压器中自我发挥机制的强大能力,研究人员为各种计算机视觉任务(例如图像识别,对象检测,图像分割,姿势估计和3D重建)开发了视觉变压器。本文介绍了有关视觉变形金刚的不同建筑设计和培训技巧(包括自我监督的学习)文献的全面概述。我们的目标是为开放研究机会提供系统的审查。
translated by 谷歌翻译
Vision变形金刚(VITS)最近获得了爆炸性的人气,但巨额的计算成本仍然是一个严峻的问题。由于VIT的计算复杂性相对于输入序列长度是二次的,因此用于计算还原的主流范例是减少令牌的数量。现有设计包括结构化空间压缩,该压缩使用逐行缩小的金字塔来减少大型特征映射的计算,并且动态丢弃冗余令牌的非结构化令牌修剪。然而,现有令牌修剪的限制在两倍以下:1)由修剪引起的不完全空间结构与现代深窄变压器通常使用的结构化空间压缩不兼容; 2)通常需要耗时的预训练程序。为了解决局限性并扩大令牌修剪的适用场景,我们提出了Evo-Vit,一种自动激励的慢速令牌演化方法,用于视觉变压器。具体而言,我们通过利用原产于视觉变压器的简单有效的全球课程关注来进行非结构化的案例 - 明智的选择。然后,我们建议使用不同的计算路径更新所选的信息令牌和未表征性令牌,即慢速更新。由于快速更新机制保持空间结构和信息流,因此Evo-Vit可以从训练过程的开始,从训练过程的开始,加速平坦和深窄的结构的Vanilla变压器。实验结果表明,我们的方法显着降低了视觉变压器的计算成本,同时在图像分类上保持了可比性。
translated by 谷歌翻译
vision变压器(VIT)最近在图像分类上实现了对卷积神经网络(CNNS)的可比结果的强大能力。然而,Vanilla Vit只是直接从自然语言处理继承相同的架构,这通常不会针对视觉应用进行优化。在这篇文章的推动中,我们提出了一种采用金字塔结构的新架构,并在视觉变压器中采用新的区域到局部关注,而不是全球自我关注。更具体地,我们的模型首先从具有不同补丁大小的图像生成区域令牌和本地标记,其中每个区域令牌与基于空间位置的一组本地代币相关联。区域到当地的注意力包括两个步骤:第一,区域自我关注提取所有区域代币之间的全球信息,然后通过自我关注将局部自我关注与相关的本地代币之间的信息交换。因此,尽管局部自我关注限制了当地区域的范围,但它仍然可以接收全球信息。在四个视觉任务中进行广泛的实验,包括图像分类,对象和关键点检测,语义分割和动作识别,表明我们的方法优于或与最先进的Vit变体(包括许多并发作品)的差异。我们的源代码和模型可在https://github.com/ibm/regionvit上使用。
translated by 谷歌翻译
随着变压器作为语言处理的标准及其在计算机视觉方面的进步,参数大小和培训数据的数量相应地增长。许多人开始相信,因此,变形金刚不适合少量数据。这种趋势引起了人们的关注,例如:某些科学领域中数据的可用性有限,并且排除了该领域研究资源有限的人。在本文中,我们旨在通过引入紧凑型变压器来提出一种小规模学习的方法。我们首次表明,具有正确的尺寸,卷积令牌化,变压器可以避免在小数据集上过度拟合和优于最先进的CNN。我们的模型在模型大小方面具有灵活性,并且在获得竞争成果的同时,参数可能仅为0.28亿。当在CIFAR-10上训练Cifar-10,只有370万参数训练时,我们的最佳模型可以达到98%的准确性,这是与以前的基于变形金刚的模型相比,数据效率的显着提高,比其他变压器小于10倍,并且是15%的大小。在实现类似性能的同时,重新NET50。 CCT还表现优于许多基于CNN的现代方法,甚至超过一些基于NAS的方法。此外,我们在Flowers-102上获得了新的SOTA,具有99.76%的TOP-1准确性,并改善了Imagenet上现有基线(82.71%精度,具有29%的VIT参数)以及NLP任务。我们针对变压器的简单而紧凑的设计使它们更可行,可以为那些计算资源和/或处理小型数据集的人学习,同时扩展了在数据高效变压器中的现有研究工作。我们的代码和预培训模型可在https://github.com/shi-labs/compact-transformers上公开获得。
translated by 谷歌翻译
Vision Transformers (ViTs) have achieved overwhelming success, yet they suffer from vulnerable resolution scalability, i.e., the performance drops drastically when presented with input resolutions that are unseen during training. We introduce, ResFormer, a framework that is built upon the seminal idea of multi-resolution training for improved performance on a wide spectrum of, mostly unseen, testing resolutions. In particular, ResFormer operates on replicated images of different resolutions and enforces a scale consistency loss to engage interactive information across different scales. More importantly, to alternate among varying resolutions, we propose a global-local positional embedding strategy that changes smoothly conditioned on input sizes. This allows ResFormer to cope with novel resolutions effectively. We conduct extensive experiments for image classification on ImageNet. The results provide strong quantitative evidence that ResFormer has promising scaling abilities towards a wide range resolutions. For instance, ResFormer-B-MR achieves a Top-1 accuracy of 75.86% and 81.72% when evaluated on relatively low and high resolutions respectively (i.e., 96 and 640), which are 48% and 7.49% better than DeiT-B. We also demonstrate, among other things, ResFormer is flexible and can be easily extended to semantic segmentation and video action recognition.
translated by 谷歌翻译
最近,视觉变压器(VIT)及其变体在各种计算机视觉任务中取得了有希望的表现。然而,VITS的高计算成本和培训数据要求将其应用程序限制在资源受限设置中。模型压缩是加快深度学习模型的有效方法,但压缩VITS的研究已经不太探索。许多以前的作品集中在减少令牌的数量。然而,这种攻击行会破坏VIT的空间结构,并且难以推广到下游任务中。在本文中,我们设计了统一的框架,用于对VITS及其变体的结构修剪,即升级Vits。我们的方法侧重于修剪所有VITS组件,同时保持模型结构的一致性。丰富的实验结果表明,我们的方法可以在压缩VITS和变体上实现高精度,例如,UP-DEIT-T在Imagenet上实现了75.79%的精度,这与Vanilla Deit-T以相同的计算成本优于3.59%。 UP-PVTV2-B0提高了PVTV2-B0的精度4.83%,以进行想象成分类。同时,上升VITS维护令牌表示的一致性,并在对象检测任务上提高一致的改进。
translated by 谷歌翻译
We design a family of image classification architectures that optimize the trade-off between accuracy and efficiency in a high-speed regime. Our work exploits recent findings in attention-based architectures, which are competitive on highly parallel processing hardware. We revisit principles from the extensive literature on convolutional neural networks to apply them to transformers, in particular activation maps with decreasing resolutions. We also introduce the attention bias, a new way to integrate positional information in vision transformers.As a result, we propose LeVIT: a hybrid neural network for fast inference image classification. We consider different measures of efficiency on different hardware platforms, so as to best reflect a wide range of application scenarios. Our extensive experiments empirically validate our technical choices and show they are suitable to most architectures. Overall, LeViT significantly outperforms existing convnets and vision transformers with respect to the speed/accuracy tradeoff. For example, at 80% ImageNet top-1 accuracy, LeViT is 5 times faster than EfficientNet on CPU. We release the code at https: //github.com/facebookresearch/LeViT.
translated by 谷歌翻译
We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (i.e. shift, scale, and distortion invariance) while maintaining the merits of Transformers (i.e. dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (e.g. ImageNet-22k) and fine-tuned to downstream tasks. Pretrained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks. Code will be released at https: //github.com/leoxiaobin/CvT.
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
我们介绍了贴片采样时间表(PSS)的概念,该概念在训练过程中每批次使用的视觉变压器(VIT)贴片的数量变化。由于对于大多数视觉目标(例如,分类),所有补丁都不同样重要,因此我们认为,不太重要的补丁可以用于较少的训练迭代中,从而导致较短的训练时间,对性能的影响最小。此外,我们观察到,使用PSS的训练可以使VIT在推理过程中对更宽的贴片采样范围更强。这允许在推理过程中进行吞吐量和准确性之间的细粒度,动态的权衡。我们使用PSSS在VIT上评估Imagenet的VIT,均通过从头开始训练并使用重建损耗函数进行了预训练。对于预训练的模型,与使用所有斑块相比,我们的分类准确性降低了0.26%(从25小时到17小时)降低了0.26%。代码,模型检查点和日志可在https://github.com/bradmcdanel/pss上找到。
translated by 谷歌翻译
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
translated by 谷歌翻译
基于自我关注机制的顶部,视觉变压器最近在各种视觉任务上表现出显着的性能。虽然实现出色的性能,但它们仍然需要相对密集的计算成本,随着斑块的数量,自我关注头和变压器块增加而剧烈缩放。在本文中,我们争辩说,由于图像的变化大,因此它们对贴片之间的长距离依赖性建模的需要不同。为此,我们介绍了一个Adavit,一个自适应计算框架,学习在每次输入的基础上派生在整个骨干内的修补程序,自我注意力头和变压器块的使用策略,旨在提高视觉变压器的推理效率图像识别的最小精度降低。以端到端的方式与变压器骨架一起优化,轻量级决策网络连接到骨架上,以便在飞行中产生决定。关于ImageNet的广泛实验表明,与最先进的视觉变压器相比,我们的方法对效率的提高超过了2倍的效率,只有0.8%的准确性,实现了在不同的计算预算上的良好效率/准确性权衡权衡。我们进一步对学习使用政策进行了定量和定性分析,并对视觉变压器的冗余提供了更多的见解。
translated by 谷歌翻译