功能工程已成为提高模型预测性能并生产优质数据集的最重要步骤之一。但是,此过程需要非平凡的域知识,涉及耗时的过程。因此,自动化此过程已成为研究的积极领域,并在工业应用中感兴趣。在本文中,提出了一种称为基于元学习和因果关系的特征工程(MACFE)的新方法。我们的方法基于使用元学习,特征分布编码和因果关系特征选择。在MacFe中,使用元学习来找到最佳的转换,然后通过预选为“原始”功能来加速搜索,鉴于其因果关系的相关性。对流行分类数据集的实验评估表明,MACFE可以改善八个分类器的预测性能,表现平均最低的最新方法至少提高6.54%,并且比最佳先前工作的提高了2.71%。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
痴呆症是一种神经精神脑障碍,通常会在一个或多个脑细胞停止部分或根本停止工作时发生。在疾病的早期阶段诊断这种疾病是从不良后果中挽救生命并为他们提供更好的医疗保健的至关重要的任务。事实证明,机器学习方法在预测疾病早期痴呆症方面是准确的。痴呆的预测在很大程度上取决于通常从归一化的全脑体积(NWBV)和地图集缩放系数(ASF)收集的收集数据类型,这些数据通常测量并从磁共振成像(MRIS)中进行校正。年龄和性别等其他生物学特征也可以帮助诊断痴呆症。尽管许多研究使用机器学习来预测痴呆症,但我们无法就这些方法的稳定性得出结论,而这些方法在不同的实验条件下更准确。因此,本文研究了有关痴呆预测的机器学习算法的性能的结论稳定性。为此,使用7种机器学习算法和两种功能还原算法,即信息增益(IG)和主成分分析(PCA)进行大量实验。为了检查这些算法的稳定性,IG的特征选择阈值从20%更改为100%,PCA尺寸从2到8。这导致了7x9 + 7x7 = 112实验。在每个实验中,都记录了各种分类评估数据。获得的结果表明,在七种算法中,支持向量机和天真的贝叶斯是最稳定的算法,同时更改选择阈值。同样,发现使用IG似乎比使用PCA预测痴呆症更有效。
translated by 谷歌翻译
自动化机器学习近年来取得了卓越的技术发展,并建立了自动化机器学习管道现在是一个必不可少的任务。模型集合是组合多种模型来获得更好更强更强的模型的技术。然而,现有的自动化机器学习在处理模型集合方面往往是简单的,其中集合策略是固定的,例如堆叠的泛化。不同的集合方法有很多技术,尤其是合奏选择,固定的集合策略限制了模型性能的上限。在本文中,我们为自动化机器学习提出了一种新颖的框架。我们的框架纳入了动态集合选择的进步,并提出了我们最佳知识,我们的方法是自动策略领域的第一个搜索和优化集合策略。在比较实验中,我们的方法优于来自OpenML平台的42个分类数据集中具有相同CPU时间的最先进的自动化机器学习框架。对我们框架的消融实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
我们在人类演变的历史上是一个独特的时间表,在那里我们可能能够发现我们的太阳系外的星星周围的地球行星,条件可以支持生活,甚至在那些行星上找到生命的证据。通过NASA,ESA和其他主要空间机构近年来推出了几个卫星,可以使用充足的数据集,可以使用,可用于培训机器学习模型,可以自动化Exoplanet检测的艰巨任务,其识别和居住地确定。自动化这些任务可以节省相当大的时间并导致人工错误最小化由于手动干预。为了实现这一目标,我们首先分析开孔望远镜捕获的恒星的光强度曲线,以检测表现出可能的行星系统存在特性的潜在曲线。对于该检测,以及培训常规模型,我们提出了一种堆叠的GBDT模型,可以同时在光信号的多个表示上培训。随后,我们通过利用几种最先进的机器学习和集合方法来解决EXOPLANET识别和居住地确定的自动化。外产的鉴定旨在将假阳性实例与外产的实际情况区分开,而居住地评估基于其可居住的特征,将外产行动的情况群体分组到不同的集群中。此外,我们提出了一种称为充足的热量充足(ATA)得分的新度量,以建立可居住和不可居住的情况之间的潜在线性关系。实验结果表明,所提出的堆叠GBDT模型优于检测过渡外出的常规模型。此外,在适当的分类中纳入ATA分数增强了模型的性能。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
The success of machine learning in a broad range of applications has led to an ever-growing demand for machine learning systems that can be used off the shelf by non-experts. To be effective in practice, such systems need to automatically choose a good algorithm and feature preprocessing steps for a new dataset at hand, and also set their respective hyperparameters. Recent work has started to tackle this automated machine learning (AutoML) problem with the help of efficient Bayesian optimization methods. Building on this, we introduce a robust new AutoML system based on scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing methods, giving rise to a structured hypothesis space with 110 hyperparameters). This system, which we dub AUTO-SKLEARN, improves on existing AutoML methods by automatically taking into account past performance on similar datasets, and by constructing ensembles from the models evaluated during the optimization. Our system won the first phase of the ongoing ChaLearn AutoML challenge, and our comprehensive analysis on over 100 diverse datasets shows that it substantially outperforms the previous state of the art in AutoML. We also demonstrate the performance gains due to each of our contributions and derive insights into the effectiveness of the individual components of AUTO-SKLEARN.
translated by 谷歌翻译
Many different machine learning algorithms exist; taking into account each algorithm's hyperparameters, there is a staggeringly large number of possible alternatives overall. We consider the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous work that addresses these issues in isolation. We show that this problem can be addressed by a fully automated approach, leveraging recent innovations in Bayesian optimization. Specifically, we consider a wide range of feature selection techniques (combining 3 search and 8 evaluator methods) and all classification approaches implemented in WEKA, spanning 2 ensemble methods, 10 meta-methods, 27 base classifiers, and hyperparameter settings for each classifier. On each of 21 popular datasets from the UCI repository, the KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show classification performance often much better than using standard selection/hyperparameter optimization methods. We hope that our approach will help non-expert users to more effectively identify machine learning algorithms and hyperparameter settings appropriate to their applications, and hence to achieve improved performance.
translated by 谷歌翻译
包括机器学习在内的计算分析方法对基因组学和医学领域具有重大影响。高通量基因表达分析方法,例如微阵列技术和RNA测序产生大量数据。传统上,统计方法用于基因表达数据的比较分析。但是,针对样品观察分类或发现特征基因的分类的更复杂的分析需要复杂的计算方法。在这篇综述中,我们编译了用于分析表达微阵列数据的各种统计和计算工具。即使在表达微阵列的背景下讨论了这些方法,也可以将它们应用于RNA测序和定量蛋白质组学数据集的分析。我们讨论缺失价值的类型以及其插补中通常采用的方法和方法。我们还讨论了数据归一化,特征选择和特征提取的方法。最后,详细描述了分类和类发现方法及其评估参数。我们认为,这项详细的审查将帮助用户根据预期结果选择适当的方法来预处理和分析其数据。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
为了允许机器学习算法从原始数据中提取知识,必须首先清除,转换,并将这些数据置于适当的形式。这些通常很耗时的阶段被称为预处理。预处理阶段的一个重要步骤是特征选择,其目的通过减少数据集的特征量来更好地执行预测模型。在这些数据集中,不同事件的实例通常是不平衡的,这意味着某些正常事件被超出,而其他罕见事件非常有限。通常,这些罕见的事件具有特殊的兴趣,因为它们具有比正常事件更具辨别力。这项工作的目的是过滤提供给这些罕见实例的特征选择方法的实例,从而积极影响特征选择过程。在这项工作过程中,我们能够表明这种过滤对分类模型的性能以及异常值检测方法适用于该过滤。对于某些数据集,所产生的性能增加仅为百分点,但对于其他数据集,我们能够实现高达16%的性能的增加。这项工作应导致预测模型的改进以及在预处理阶段的过程中的特征选择更好的可解释性。本着公开科学的精神,提高了我们的研究领域的透明度,我们已经在公开的存储库中提供了我们的所有源代码和我们的实验结果。
translated by 谷歌翻译
Automated Feature Engineering (AFE) refers to automatically generate and select optimal feature sets for downstream tasks, which has achieved great success in real-world applications. Current AFE methods mainly focus on improving the effectiveness of the produced features, but ignoring the low-efficiency issue for large-scale deployment. Therefore, in this work, we propose a generic framework to improve the efficiency of AFE. Specifically, we construct the AFE pipeline based on reinforcement learning setting, where each feature is assigned an agent to perform feature transformation \com{and} selection, and the evaluation score of the produced features in downstream tasks serve as the reward to update the policy. We improve the efficiency of AFE in two perspectives. On the one hand, we develop a Feature Pre-Evaluation (FPE) Model to reduce the sample size and feature size that are two main factors on undermining the efficiency of feature evaluation. On the other hand, we devise a two-stage policy training strategy by running FPE on the pre-evaluation task as the initialization of the policy to avoid training policy from scratch. We conduct comprehensive experiments on 36 datasets in terms of both classification and regression tasks. The results show $2.9\%$ higher performance in average and 2x higher computational efficiency comparing to state-of-the-art AFE methods.
translated by 谷歌翻译
只要可以预见的是测试代码的固有特征,可以大大降低测试的高成本。本文提供了一种机器学习模型,以预测测试可以在多大程度上覆盖一个名为Coverabeality的新指标。预测模型由四个回归模型的集合组成。学习样本由特征向量组成,其中特征是为类计算的源代码指标。样品由针对其相应类计算的覆盖率值标记。我们提供了一个数学模型,以评估每个班级自动生成的测试套件的尺寸和覆盖范围的测试效果。我们通过引入一种新方法来根据现有源代码指标来定义子计量数来扩展功能空间的大小。使用功能重要性分析在学习的预测模型上,我们按照对测试效果的影响顺序对源代码指标进行排序。结果,我们发现类别严格的循环复杂性是最有影响力的源代码度量。我们对包含大约23,000个类的大型Java项目的预测模型进行的实验表明,平均绝对误差(MAE)为0.032,平均平方误差(MSE)为0.004,R2得分为0.855。与最先进的覆盖范围预测模型相比,我们的模型分别提高了MAE,MSE和R2得分5.78%,2.84%和20.71%。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
药物介导的电压门控钾通道(HERG)和电压门控钠通道(NAV1.5)可导致严重的心血管并发症。这种上升的担忧已经反映在药物开发竞技场中,因为许多经批准的药物的常常出现心脏毒性导致他们在某些情况下停止他们的使用,或者在某些情况下,他们从市场上撤回。在药物发现过程的开始时预测潜在的HERG和NAV1.5阻滞剂可以解决这个问题,因此可以降低开发安全药物的时间和昂贵的成本。一种快速且经济高效的方法是在杂草中使用硅预测方法,在药物开发的早期阶段杂草出潜在的Herg和Nav1.5阻滞剂。在这里,我们介绍了两种基于强大的基于2D描述符的基于描述符的QSAR预测模型,用于HERG和NAV1.5责任预测。机器学习模型训练,用于回归,预测药物的效力值,以及三种不同效力截止的多条分类(即1 {\ mu} m,10 {\ mu} m,和30 {\ mu}) M),其中托管 - Herg分类器是随机森林模型的管道,受到8380个独特的分子化合物的大型策级数据集。虽然Toxtree-Nav1.5分类器,凯列化SVM模型的管道,由来自Chembl和Pubchem公开的生物活动数据库的大型手动策划的1550个独特的化合物培训。拟议的HERG诱导者表现优于最先进的发布模型和其他现有工具的大多数指标。此外,我们正在介绍Q4 = 74.9%的第一个NAV1.5责任预测模型,Q2 = 86.7%的二进制分类= 71.2%在173个独特的化合物的外部测试组上进行评估。该项目中使用的策划数据集公开可向研究界提供。
translated by 谷歌翻译
颠覆性技术提供无与伦比的机会,为普遍存在医疗保健的许多方面的标识,从通过内容到机器学习(ML)技术来促进普及医疗保健的识别。作为一个强大的工具,ML已被广泛应用于以患者为中心的医疗保健解决方案。为了进一步提高患者护理的质量,在医疗保健设施中通常采用电子健康记录(EHRS)进行分析。由于它们高度非结构化,不平衡,不完整和高维性质,应用AI和ML将AI和ML应用AI和ML分析那些EHRS的重要任务。减少维度是一种常见的数据预处理技术,用于应对高维EHR数据,旨在减少EHR表示的特征的数量,同时提高随后的数据分析的性能,例如,分类。在这项工作中,提出了一种高效的基于滤波器的特征选择方法,即基于曲率的特征选择(CFS)。所提出的CFS应用了Menger曲率的概念,以对给定数据集中的所有功能的重量进行排名。已经在四种众所周知的EHR数据集中评估了所提出的CFS的性能,包括宫颈癌危险因素(CCRFD),乳腺癌助生(BCCDS),乳腺组织(BTDS)和糖尿病视网膜病变(DRDDD)。实验结果表明,所提出的CFS在上述数据集上实现了最先进的性能,而不是传统的PCA和其他最新方法。所提出的方法的源代码在https://github.com/zhemingzuo/cfs上公开提供。
translated by 谷歌翻译
血浆定义为物质的第四个状态,在高电场下可以在大气压下产生非热血浆。现在众所周知,血浆激活液体(PAL)的强和广谱抗菌作用。机器学习(ML)在医疗领域的可靠适用性也鼓励其在等离子体医学领域的应用。因此,在PALS上的ML应用可以提出一种新的观点,以更好地了解各种参数对其抗菌作用的影响。在本文中,通过使用先前获得的数据来定性预测PAL的体外抗菌活性,从而介绍了比较监督的ML模型。进行了文献搜索,并从33个相关文章中收集了数据。在所需的预处理步骤之后,将两种监督的ML方法(即分类和回归)应用于数据以获得微生物灭活(MI)预测。对于分类,MI分为四类,对于回归,MI被用作连续变量。为分类和回归模型进行了两种不同的可靠交叉验证策略,以评估所提出的方法。重复分层的K折交叉验证和K折交叉验证。我们还研究了不同特征对模型的影响。结果表明,高参数优化的随机森林分类器(ORFC)和随机森林回归者(ORFR)分别比其他模型进行了分类和回归的模型更好。最后,获得ORFC的最佳测试精度为82.68%,ORFR的R2为0.75。 ML技术可能有助于更好地理解在所需的抗菌作用中具有主要作用的血浆参数。此外,此类发现可能有助于将来的血浆剂量定义。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
机器学习(ML)生命周期涉及一系列迭代步骤,从有效的收集和准备数据,包括复杂的特征工程流程,对结果的演示和改进,各种步骤中的各种算法选择。特征工程尤其可以对ML非常有益,导致许多改进,例如提高预测结果,降低计算时间,减少过度噪音,并提高培训期间所采取的决策背后的透明度。尽管如此,虽然存在多个视觉分析工具来监控和控制ML生命周期的不同阶段(特别是与数据和算法相关的阶段),但功能工程支持仍然不足。在本文中,我们提出了FightEnvi,一种专门设计用于协助特征工程过程的视觉分析系统。我们建议的系统可帮助用户选择最重要的功能,将原始功能转换为强大的替代方案,并进行不同的特征生成组合。此外,数据空间切片允许用户探索本地和全局尺度上的功能的影响。 Feationenvi利用多种自动特征选择技术;此外,它目视指导用户有统计证据的关于每个特征的影响(或功能的子集)。最终结果是通过多种验证度量评估的重新设计的重新设计特征。用两种用例和案例研究证明了FeatureenVI的有用性和适用性。我们还向评估我们系统的有效性以及评估我们系统的有效性的观众报告反馈。
translated by 谷歌翻译