在合作的多代理增强学习(MARL)中,代理只能获得部分观察,有效利用本地信息至关重要。在长期观察期间,代理可以构建\ textit {意识},使队友减轻部分可观察性问题。但是,以前的MAL方法通常忽略了对本地信息的这种利用。为了解决这个问题,我们提出了一个新颖的框架,多代理\ textit {本地信息分解,以意识到队友}(linda),代理商通过该框架学会分解本地信息并为每个队友建立意识。我们将意识模拟为随机随机变量并执行表示学习,以确保意识表示的信息,通过最大程度地提高意识与相应代理的实际轨迹之间的相互信息。 Linda对特定算法是不可知论的,可以灵活地集成到不同的MARL方法中。足够的实验表明,所提出的框架从当地的部分观察结果中学习了信息丰富的意识,以更好地协作并显着提高学习绩效,尤其是在具有挑战性的任务上。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, in many complex multi-agent tasks, different agents are expected to possess specific abilities to handle different subtasks. In those scenarios, sharing parameters indiscriminately may lead to similar behavior across all agents, which will limit the exploration efficiency and degrade the final performance. To balance the training complexity and the diversity of agent behavior, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder to construct a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. In this way, agents dealing with the same subtask share their learning of specific abilities and different subtasks correspond to different specific abilities. We further introduce two regularizers to increase the representation difference between subtasks and stabilize the training by discouraging agents from frequently changing subtasks, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark and Google Research Football.
translated by 谷歌翻译
协作多代理增强学习(MARL)已在许多实际应用中广泛使用,在许多实际应用中,每个代理商都根据自己的观察做出决定。大多数主流方法在对分散的局部实用程序函数进行建模时,将每个局部观察结果视为完整的。但是,他们忽略了这样一个事实,即可以将局部观察信息进一步分为几个实体,只有一部分实体有助于建模推理。此外,不同实体的重要性可能会随着时间而变化。为了提高分散政策的性能,使用注意机制用于捕获本地信息的特征。然而,现有的注意模型依赖于密集的完全连接的图,并且无法更好地感知重要状态。为此,我们提出了一个稀疏的状态MARL(S2RL)框架,该框架利用稀疏的注意机制将无关的信息丢弃在局部观察中。通过自我注意力和稀疏注意机制估算局部效用函数,然后将其合并为标准的关节价值函数和中央评论家的辅助关节价值函数。我们将S2RL框架设计为即插即用的模块,使其足够一般,可以应用于各种方法。关于Starcraft II的广泛实验表明,S2RL可以显着提高许多最新方法的性能。
translated by 谷歌翻译
多代理增强学习(MARL)在价值函数分解方法的发展中见证了重大进展。由于单调性,它可以通过最大程度地分解每个代理实用程序来优化联合动作值函数。在本文中,我们表明,在部分可观察到的MARL问题中,代理商对自己的行为的订购可能会对代表功能类施加并发约束(跨不同状态),从而在培训期间造成重大估计错误。我们解决了这一限制,并提出了PAC,PAC是一个新的框架,利用了最佳联合行动选择的反事实预测产生的辅助信息,这可以通过新颖的反事实损失通过新颖的辅助来实现价值功能分解。开发了一种基于变异推理的信息编码方法,以从估计的基线收集和编码反事实预测。为了实现分散的执行,我们还得出了受最大收入MARL框架启发的分级分配的代理策略。我们评估了有关多代理捕食者捕食者和一组Starcraft II微管理任务的PAC。经验结果表明,在所有基准上,PAC对基于最先进的价值和基于策略的多代理增强学习算法的结果得到了改善。
translated by 谷歌翻译
通过集中培训和分散执行的价值功能分解是有助于解决合作多功能协商强化任务的承诺。该地区QMIX的方法之一已成为最先进的,在星际争霸II微型管理基准上实现了最佳性能。然而,已知QMIX中每个代理估计的单调混合是限制它可以表示的关节动作Q值,以及单个代理价值函数估计的全局状态信息,通常导致子优相。为此,我们呈现LSF-SAC,这是一种新颖的框架,其具有基于变分推理的信息共享机制,作为额外的状态信息,以帮助在价值函数分子中提供各个代理。我们证明,这种潜在的个人状态信息共享可以显着扩展价值函数分解的力量,而通过软演员批评设计仍然可以在LSF-SAC中保持完全分散的执行。我们在星际争霸II微型管理挑战上评估LSF-SAC,并证明它在挑战协作任务方面优于几种最先进的方法。我们进一步设定了广泛的消融研究,以定位核算其绩效改进的关键因素。我们认为,这种新的洞察力可以导致新的地方价值估算方法和变分的深度学习算法。可以在https://sites.google.com/view/sacmm处找到演示视频和实现代码。
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
最近,深度多智能经纪增强学习(Marl)已经表明了解决复杂的合作任务的承诺。它的成功部分是因为代理商之间的参数共享。然而,这种共享可能导致代理人行事,并限制其协调能力。在本文中,我们的目标是在共享多智能经纪增强学习的优化和代表中引入多样性。具体而言,我们提出了一种信息理论正则化,以最大限度地提高代理商身份与其轨迹之间的相互信息,鼓励广泛的勘探和各种个性化行为。在表示中,我们将特定于代理的神经网络架构中的特定模块纳入了共享神经网络架构,这些模块由L1-Norm规则化,以促进代理之间的学习共享,同时保持必要的多样性。实证结果表明,我们的方法在谷歌研究足球和超级硬星争II微型管理任务中实现了最先进的性能。
translated by 谷歌翻译
Adequate strategizing of agents behaviors is essential to solving cooperative MARL problems. One intuitively beneficial yet uncommon method in this domain is predicting agents future behaviors and planning accordingly. Leveraging this point, we propose a two-level hierarchical architecture that combines a novel information-theoretic objective with a trajectory prediction model to learn a strategy. To this end, we introduce a latent policy that learns two types of latent strategies: individual $z_A$, and relational $z_R$ using a modified Graph Attention Network module to extract interaction features. We encourage each agent to behave according to the strategy by conditioning its local $Q$ functions on $z_A$, and we further equip agents with a shared $Q$ function that conditions on $z_R$. Additionally, we introduce two regularizers to allow predicted trajectories to be accurate and rewarding. Empirical results on Google Research Football (GRF) and StarCraft (SC) II micromanagement tasks show that our method establishes a new state of the art being, to the best of our knowledge, the first MARL algorithm to solve all super hard SC II scenarios as well as the GRF full game with a win rate higher than $95\%$, thus outperforming all existing methods. Videos and brief overview of the methods and results are available at: https://sites.google.com/view/hier-strats-marl/home.
translated by 谷歌翻译
深层合作的多方强化学习已经证明了其在各种复杂的控制任务上取得了巨大的成功。但是,多学院学习的最新进展主要集中在价值分解上,而使实体交互仍然交织在一起,这很容易导致对实体之间的嘈杂相互作用过度拟合。在这项工作中,我们引入了一种新型的交互模式分离(OPT)方法,以将关节值函数不仅置于分散执行的代理值函数中,还将实体交互作用到交互原型中,每种都代表了潜在的交互作用模式在实体的子组中。 OPT促进了无关实体之间的嘈杂相互作用,从而显着提高了普遍性和可解释性。具体而言,OPT引入了稀疏分歧机制,以鼓励发现的相互作用原型之间的稀疏性和多样性。然后,该模型通过具有可学习权重的聚合器选择将这些原型重组为紧凑的交互模式。为了减轻部分可观察性引起的训练不稳定性问题,我们建议最大程度地提高聚合权重与每个代理的历史行为之间的相互信息。单任务和多任务基准的实验表明,所提出的方法得出的结果优于最先进的对应。我们的代码将公开可用。
translated by 谷歌翻译
几乎所有的多代理强化学习算法没有交流,都遵循分散执行的集中培训原则。在集中培训期间,代理可以以相同的信号为指导,例如全球国家。但是,在分散执行期间,代理缺乏共享信号。受到观点不变性和对比学习的启发,我们在本文中提出了共识学习,以学习合作的多代理增强学习。尽管基于局部观察结果,但不同的代理可以在离散空间中推断出相同的共识。在分散执行期间,我们将推断的共识作为对代理网络的明确输入提供了,从而发展了他们的合作精神。我们提出的方法可以扩展到具有小模型更改的各种多代理增强学习算法。此外,我们执行一些完全合作的任务,并获得令人信服的结果。
translated by 谷歌翻译
在复杂的协调问题中,深层合作多智能经纪增强学习(Marl)的高效探索仍然依然存在挑战。在本文中,我们介绍了一种具有奇妙驱动的探索的新型情节多功能钢筋学习,称为EMC。我们利用对流行分解的MARL算法的洞察力“诱导的”个体Q值,即用于本地执行的单个实用程序功能,是本地动作观察历史的嵌入,并且可以捕获因奖励而捕获代理之间的相互作用在集中培训期间的反向化。因此,我们使用单独的Q值的预测误差作为协调勘探的内在奖励,利用集肠内存来利用探索的信息经验来提高政策培训。随着代理商的个人Q值函数的动态捕获了国家的新颖性和其他代理人的影响,我们的内在奖励可以促使对新或有前途的国家的协调探索。我们通过教学实例说明了我们的方法的优势,并展示了在星际争霸II微互动基准中挑战任务的最先进的MARL基础上的其显着优势。
translated by 谷歌翻译
作为分散的部分观察到的马尔可夫决策过程(DEC-POMDP)问题的解决方案之一,最近的价值分解方法已经实现了显着的结果。然而,大多数值分解方法需要在训练期间的环境完全可观察状态,但这在一些场景中是不可行的,在某些情况下可以获得不完整和嘈杂的观察。因此,我们提出了一种新颖的值分解框架,命名为值分解(侧)的状态推断,这消除了通过同时寻求最佳控制和状态推断的两个问题来了解全局状态的需要。侧面可以扩展到任何值分解方法,以解决部分可观察的问题。通过比较星际II微型管理任务中的不同算法的性能,但我们验证了没有可访问状态,方面可以推断基于过去的本地观测的增强学习过程,甚至在一些基础上实现卓越的结果复杂的情景。
translated by 谷歌翻译
Starcraft II多代理挑战(SMAC)被创建为合作多代理增强学习(MARL)的具有挑战性的基准问题。 SMAC专注于星际争霸微管理的问题,并假设每个单元都由独立行动并仅具有本地信息的学习代理人单独控制;假定通过分散执行(CTDE)进行集中培训。为了在SMAC中表现良好,MARL算法必须处理多机构信贷分配和联合行动评估的双重问题。本文介绍了一种新的体系结构Transmix,这是一个基于变压器的联合行动值混合网络,与其他最先进的合作MARL解决方案相比,我们显示出高效且可扩展的。 Transmix利用变形金刚学习更丰富的混合功能的能力来结合代理的个人价值函数。它与以前的SMAC场景上的工作相当,并且在困难场景上胜过其他技术,以及被高斯噪音损坏的场景以模拟战争的雾。
translated by 谷歌翻译
学习稀疏协调图表适应了代理之间的协调动态,这是合作多学院学习的一个长期问题。本文研究了这个问题,并提出了一种新的方法,该方法使用回报函数的方差来构建上下文意识到的稀疏协调拓扑。从理论上讲,我们通过证明回报函数的差异越小,删除相应的边缘后,较小的操作选择将会改变。此外,我们建议学习行动表示,以有效地减少回报功能估计错误对图形构造的影响。为了凭经验评估我们的方法,我们通过在文献中收集经典的协调问题,增加了它们的难度并将其分类为不同类型,我们介绍了多代理协调(MACO)基准。我们在Maco和Starcraft II微管理基准上进行了案例研究和实验,以证明稀疏图学习的动力学,图形稀疏性的影响以及我们方法的学习性能。 (MACO基准和代码可在https://github.com/tonghanwang/casec-maco-benchmark上公开获得。)
translated by 谷歌翻译
Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.
translated by 谷歌翻译
多代理增强学习(MARL)最近在各个领域取得了巨大的成功。但是,借助黑盒神经网络架构,现有的MARL方法以不透明的方式做出决策,使人无法理解学习知识以及输入观察如何影响决策。我们的解决方案是混合经常性的软决策树(MixRTS),这是一种可解释的新型结构,可以通过决策树的根到叶子路径来表示明确的决策过程。我们在软决策树中引入了一种新颖的经常性结构,以解决部分观察性,并通过仅基于局部观察结果线性混合复发树的输出来估算关节作用值。理论分析表明,混合物在分解中保证具有添加性和单调性的结构约束。我们在一系列具有挑战性的Starcraft II任务上评估MixRT。实验结果表明,与广泛研究的基线相比,我们的可解释的学习框架获得了竞争性能,并提供了对决策过程的更直接的解释和领域知识。
translated by 谷歌翻译
在本文中,我们认为合作的多代理强化学习(MARL)具有稀疏的奖励。为了解决这个问题,我们提出了一种名为Maser:MARL的新方法,并具有从经验重播缓冲区产生的子目标。在广泛使用的集中式培训的假设下,通过分散执行和对MARL的Q值分解的一致性,Maser通过考虑单个Q值和总Q值来自动为多个代理人生成适当的子目标。然后,Maser根据与Q学习相关的可行表示为每个代理设计个人固有奖励,以便代理人达到其子目标,同时最大化联合行动值。数值结果表明,与其他最先进的MARL算法相比,Maser的表现明显优于Starcraft II微管理基准。
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
我们探索了在流行的集中式培训范式(CTDE)中流行的集中式培训范式中的多代理深度强化学习的价值分解解决方案。作为公认的CTDE解决方案,加权QMIX是星际争霸多代理挑战(SMAC)的尖端,并在QMIX上实施了加权方案,以更加重视最佳的关节动作。但是,固定重量需要根据应用程序场景进行手动调整,该场景痛苦地防止加权QMIX用于更广泛的工程应用中。在本文中,我们首先使用普通的一步矩阵游戏(OMG)证明了加权QMIX的缺陷,无论选择重量如何,加权QMIX努力解决非单调的价值分解问题,并具有很大的差异奖励分布。然后,我们将价值分解的问题描述为一种不足的单调的健壮回归问题,并首先尝试从信息理论学习的角度为价值分解问题提供解决方案。我们引入最大Correntropy Criterion(MCC)作为成本函数,以动态调整重量以消除奖励分布中最小值的影响。我们简化了实现,并提出了一种称为MCVD的新算法。对OMG进行的初步实验表明,MCVD可以处理非单调的值分解问题,并且对核带宽选择的耐受性很高。进一步的实验是在合作游动和多个SMAC场景的情况下进行的,其中MCVD表现出前所未有的实施,广泛的适用性和稳定性。
translated by 谷歌翻译
学习协作对于多机构增强学习(MARL)至关重要。以前的作品通过最大化代理行为的相关性来促进协作,该行为的相关性通常以不同形式的相互信息(MI)为特征。但是,我们揭示了次最佳的协作行为,也出现了强烈的相关性,并且简单地最大化MI可以阻碍学习的学习能力。为了解决这个问题,我们提出了一个新颖的MARL框架,称为“渐进式信息协作(PMIC)”,以进行更有效的MI驱动协作。 PMIC使用全球国家和联合行动之间MI测量的新协作标准。基于此标准,PMIC的关键思想是最大程度地提高与优越的协作行为相关的MI,并最大程度地减少与下等方面相关的MI。这两个MI目标通过促进更好的合作,同时避免陷入次级优势,从而扮演互补的角色。与其他算法相比,在各种MARL基准测试的实验表明,PMIC的表现出色。
translated by 谷歌翻译