由于缺乏电感偏见,视觉变压器(VIT)通常被认为比卷积神经网络(CNN)少。因此,最近的工作将卷积作为插件模块,并将其嵌入各种Vit对应物中。在本文中,我们认为卷积内核执行信息聚合以连接所有令牌。但是,如果这种明确的聚合能够以更均匀的方式起作用,则实际上是轻重量VIT的不必要的。受到这一点的启发,我们将Lightvit作为新的轻巧VIT家族,以在不卷积的情况下在纯变压器块上实现更好的准确性效率平衡。具体而言,我们将一个全球但有效的聚合方案引入了VIT的自我注意力和前馈网络(FFN),其中引入了其他可学习的令牌以捕获全球依赖性;在令牌嵌入上施加了双维通道和空间注意力。实验表明,我们的模型在图像分类,对象检测和语义分割任务上取得了重大改进。例如,我们的LightVit-T仅使用0.7G拖鞋的ImageNet上达到78.7%的精度,在GPU上的PVTV2-B0优于8.2%,而GPU的速度快11%。代码可在https://github.com/hunto/lightvit上找到。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
vision变压器(VIT)最近在图像分类上实现了对卷积神经网络(CNNS)的可比结果的强大能力。然而,Vanilla Vit只是直接从自然语言处理继承相同的架构,这通常不会针对视觉应用进行优化。在这篇文章的推动中,我们提出了一种采用金字塔结构的新架构,并在视觉变压器中采用新的区域到局部关注,而不是全球自我关注。更具体地,我们的模型首先从具有不同补丁大小的图像生成区域令牌和本地标记,其中每个区域令牌与基于空间位置的一组本地代币相关联。区域到当地的注意力包括两个步骤:第一,区域自我关注提取所有区域代币之间的全球信息,然后通过自我关注将局部自我关注与相关的本地代币之间的信息交换。因此,尽管局部自我关注限制了当地区域的范围,但它仍然可以接收全球信息。在四个视觉任务中进行广泛的实验,包括图像分类,对象和关键点检测,语义分割和动作识别,表明我们的方法优于或与最先进的Vit变体(包括许多并发作品)的差异。我们的源代码和模型可在https://github.com/ibm/regionvit上使用。
translated by 谷歌翻译
近期视觉变压器〜(VIT)模型在各种计算机视觉任务中展示了令人鼓舞的结果,因为他们的竞争力通过自我关注建模图像补丁或令牌的长距离依赖性。然而,这些模型通常指定每层中每个令牌特征的类似场景。这种约束不可避免地限制了每个自我注意层在捕获多尺度特征中的能力,从而导致处理具有不同尺度的多个对象的图像的性能下降。为了解决这个问题,我们提出了一种新颖和通用的策略,称为分流的自我关注〜(SSA),它允许VITS为每个关注层的混合秤的关注进行模拟。 SSA的关键概念是将异构接收领域的尺寸注入令牌:在计算自我注意矩阵之前,它选择性地合并令牌以表示较大的对象特征,同时保持某些令牌以保持细粒度的特征。这种新颖的合并方案能够自我注意,以了解具有不同大小的对象之间的关系,并同时降低令牌数字和计算成本。各种任务的广泛实验表明了SSA的优越性。具体而言,基于SSA的变压器实现了84.0 \%的前1个精度,并且在ImageNet上占据了最先进的焦距变压器,只有一半的模型尺寸和计算成本,并且在Coco上超过了焦点变压器1.3映射2.9 MIOU在ADE20K上类似参数和计算成本。代码已在https://github.com/oliverrensu/shunted-transformer发布。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
视觉变压器(VIT)触发了计算机视觉的最新和重大突破。它们的有效设计主要由计算复杂性的间接度量(即拖船)指导,但是,该指标与直接度量(例如吞吐量)具有明显的差距。因此,我们建议将目标平台上的直接速度评估作为有效VIT的设计原理。特别是,我们介绍了LITV2,这是一种简单有效的VIT,可与以更快的速度更快的不同模型大小相对现有的最新方法。 LITV2的核心是一种新型的自我发项机制,我们将其配音。希洛的灵感来自于洞察力的启发:图像中的高频捕获本地细节和低频集中在全球结构上,而多头自发项层则忽略了不同频率的特征。因此,我们建议通过将头部分为两组来解散注意力层中的高/低频模式,其中一组在每个本地窗口内通过自我关注来编码高频,而另一组则执行注意力以模拟全局关系。在每个窗口的平均低频键与输入功能图中的每个查询位置之间。从两组的有效设计中受益,我们表明希洛通过对GPU上的速度,速度和记忆消耗进行了全面测试,优于现有的注意机制。 LITV2由Hilo提供支持,是主流视觉任务的强大主链,包括图像分类,密集检测和分割。代码可从https://github.com/ziplab/litv2获得。
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
变压器已成为深度学习中的主导架构之一,特别是计算机视觉中的卷积神经网络(CNNS)的强大替代品。然而,由于长期表示的自我关注的二次复杂性,以前作品中的变压器培训和推理可能是非常昂贵的,特别是对于高分辨率密集预测任务。为此,我们提出了一种更少的关注视觉变压器(点亮),建立在变形金刚的早期自我注意层仍然专注于当地模式并在最近的等级视觉变压器中带来轻微的益处。具体而言,我们提出了一种分层变压器,在那里我们使用纯多层的感知(MLP)来在早期阶段编码丰富的本地模式,同时应用自我注意模块来捕获更深层中的较长依赖性。此外,我们进一步提出了一种学习的可变形的令牌合并模块,以以非均匀方式自适应地熔化信息贴片。建议的点亮在图像识别任务中实现了有希望的性能,包括图像分类,对象检测和实例分段,作为许多愿景任务的强骨干。代码可用:https://github.com/zhuang-group/lit
translated by 谷歌翻译
视觉变压器(VIT)最近在一系列计算机视觉任务中占据了主导地位,但训练数据效率低下,局部语义表示能力较低,而没有适当的电感偏差。卷积神经网络(CNNS)固有地捕获了区域感知语义,激发了研究人员将CNN引入VIT的架构中,以为VIT提供理想的诱导偏见。但是,嵌入在VIT中的微型CNN实现的位置是否足够好?在本文中,我们通过深入探讨混合CNNS/VIT的宏观结构如何增强层次VIT的性能。特别是,我们研究了令牌嵌入层,别名卷积嵌入(CE)的作用,并系统地揭示了CE如何在VIT中注入理想的感应偏置。此外,我们将最佳CE配置应用于最近发布的4个最先进的Vits,从而有效地增强了相应的性能。最后,释放了一个有效的混合CNN/VIT家族,称为CETNET,可以用作通用的视觉骨架。具体而言,CETNET在Imagenet-1K上获得了84.9%的TOP-1准确性(从头开始训练),可可基准上的48.6%的盒子地图和ADE20K上的51.6%MIOU,从而显着提高了相应的最新态度的性能。艺术基线。
translated by 谷歌翻译
变压器提供了一种设计神经网络以进行视觉识别的新方法。与卷积网络相比,变压器享有在每个阶段引用全局特征的能力,但注意模块带来了更高的计算开销,阻碍了变压器的应用来处理高分辨率的视觉数据。本文旨在减轻效率和灵活性之间的冲突,为此,我们为每个地区提出了专门的令牌,作为使者(MSG)。因此,通过操纵这些MSG令牌,可以在跨区域灵活地交换视觉信息,并且减少计算复杂性。然后,我们将MSG令牌集成到一个名为MSG-Transformer的多尺度体系结构中。在标准图像分类和对象检测中,MSG变压器实现了竞争性能,加速了GPU和CPU的推断。代码可在https://github.com/hustvl/msg-transformer中找到。
translated by 谷歌翻译
Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully devised yet simple spatial attention mechanism performs favorably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks including image-level classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our Code is available at: https://git.io/Twins.
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
诸如对象检测和分割等密集的计算机视觉任务需要有效的多尺度特征表示,用于检测或分类具有不同大小的对象或区域。虽然卷积神经网络(CNNS)是这种任务的主导架构,但最近引入了视觉变压器(VITS)的目标是将它们替换为骨干。类似于CNN,VITS构建一个简单的多级结构(即,细致粗略),用于使用单尺度补丁进行多尺度表示。在这项工作中,通过从现有变压器的不同角度来看,我们探索了多尺度补丁嵌入和多路径结构,构建了多路径视觉变压器(MPVIT)。 MPVIT通过使用重叠的卷积贴片嵌入,将相同尺寸〜(即,序列长度,序列长度,序列长度的序列长度)嵌入不同尺度的斑块。然后,通过多个路径独立地将不同尺度的令牌独立地馈送到变压器编码器,并且可以聚合产生的特征,使得能够在相同特征级别的精细和粗糙的特征表示。由于多样化,多尺寸特征表示,我们的MPVits从微小〜(5m)缩放到基础〜(73米)一直在想象成分,对象检测,实例分段上的最先进的视觉变压器来实现卓越的性能,和语义细分。这些广泛的结果表明,MPVIT可以作为各种视觉任务的多功能骨干网。代码将在\ url {https://git.io/mpvit}上公开可用。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
本文提出了RESTV2,这是一种更简单,更快,更强的多尺度视觉变压器,用于视觉识别。 RESTV2简化了RESTV1中的EMSA结构(即消除了多头相互作用零件),并采用了upplame操作来重建由下采样操作引起的丢失的中等和高频信息。此外,我们探索了不同的技术,以更好地将RESTV2骨架应用于下游任务。我们发现,尽管将EMSAV2和窗户注意力结合起来可以大大减少理论矩阵乘数拖台,但它可能会大大降低计算密度,从而导致较低的实际速度。我们全面验证RESTV2在Imagenet分类,可可检测和ADE20K语义分割方面。实验结果表明,所提出的RESTV2可以大幅度优于最近最新的骨干,这表明RESTV2作为固体骨架的潜力。代码和模型将在\ url {https://github.com/wofmanaf/rest}公开可用
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
最近,Vision Transformer通过推动各种视觉任务的最新技术取得了巨大的成功。视觉变压器中最具挑战性的问题之一是,图像令牌的较大序列长度会导致高计算成本(二次复杂性)。解决此问题的一个流行解决方案是使用单个合并操作来减少序列长度。本文考虑如何改善现有的视觉变压器,在这种变压器中,单个合并操作提取的合并功能似乎不太强大。为此,我们注意到,由于其在上下文抽象中的强大能力,金字塔池在各种视觉任务中已被证明是有效的。但是,在骨干网络设计中尚未探索金字塔池。为了弥合这一差距,我们建议在视觉变压器中将金字塔池汇总到多头自我注意力(MHSA)中,同时降低了序列长度并捕获强大的上下文特征。我们插入了基于池的MHSA,我们构建了一个通用视觉变压器主链,称为金字塔池变压器(P2T)。广泛的实验表明,与先前的基于CNN-和基于变压器的网络相比,当将P2T用作骨干网络时,它在各种视觉任务中显示出很大的优势。该代码将在https://github.com/yuhuan-wu/p2t上发布。
translated by 谷歌翻译
我们介绍克斯内变压器,一种高效且有效的变压器的骨干,用于通用视觉任务。变压器设计的具有挑战性的问题是,全球自我关注来计算成本昂贵,而局部自我关注经常限制每个令牌的相互作用。为了解决这个问题,我们开发了以平行的横向和垂直条纹在水平和垂直条纹中计算自我关注的交叉形窗口自我关注机制,通过将输入特征分成相等的条纹而获得的每个条纹宽度。我们提供了条纹宽度效果的数学分析,并改变变压器网络的不同层的条纹宽度,这在限制计算成本时实现了强大的建模能力。我们还介绍了本地增强的位置编码(LEPE),比现有的编码方案更好地处理本地位置信息。 LEPE自然支持任意输入分辨率,因此对下游任务特别有效和友好。 CSWIN变压器并入其具有这些设计和分层结构,展示了普通愿景任务的竞争性能。具体来说,它在ImageNet-1K上实现了85.4 \%Top-1精度,而无需任何额外的培训数据或标签,53.9盒AP和46.4掩模AP,ADE20K语义分割任务上的52.2 Miou,超过以前的状态 - 在类似的拖鞋设置下,艺术品+1.2,+2.0,+1.4和+2.0分别为+1.2,+2.0,+1.4和+2.0。通过在较大的数据集Imagenet-21k上进行前预先预订,我们在Ave20K上实现了87.5%的成像-1K和高分性能,55.7 miou。代码和模型可在https://github.com/microsoft/cswin-transformer中找到。
translated by 谷歌翻译
基于自我注意力的模型,例如视觉变压器(VIT),已经成为计算机视觉中卷积神经网络(CNN)的一种非常有竞争力的建筑。尽管越来越高的变体具有更高的识别精度,但由于自我注意力的二次复杂性,现有的VIT通常在计算和模型大小中要求。尽管已重新引入了最近的CNN的几种成功设计选择(例如,卷积和分层多阶段结构)已重新引入最近的VIT,但它们仍然不足以满足移动设备的有限资源要求。这激发了最近根据最先进的Mobilenet-V2开发光线的尝试,但仍然留下了性能差距。在这项工作中,在这个研究不足的方向上进一步推动了Edgevits,这是一个新的轻巧vits家族,这首先使基于注意力的视觉模型能够与最佳轻巧的CNN竞争,这准确性和设备效率。这是通过基于自我注意力和卷积的最佳整合而引入高度成本效益的本地 - 全球局(LGL)信息交换瓶颈来实现的。对于设备青年的评估,我们不再依赖诸如拖船或参数的不准确代理,而是采用一种实用的方法来直接专注于设备延迟,以及首次首次提供能源效率。具体而言,我们表明,当考虑准确性的延迟和准确性 - 能量折衷时,我们的模型是帕累托最佳的,在几乎所有情况下都严格占据了其他VIT并与最有效的CNN竞争的严格优势。代码可从https://github.com/saic-fi/edgevit获得。
translated by 谷歌翻译