我们介绍克斯内变压器,一种高效且有效的变压器的骨干,用于通用视觉任务。变压器设计的具有挑战性的问题是,全球自我关注来计算成本昂贵,而局部自我关注经常限制每个令牌的相互作用。为了解决这个问题,我们开发了以平行的横向和垂直条纹在水平和垂直条纹中计算自我关注的交叉形窗口自我关注机制,通过将输入特征分成相等的条纹而获得的每个条纹宽度。我们提供了条纹宽度效果的数学分析,并改变变压器网络的不同层的条纹宽度,这在限制计算成本时实现了强大的建模能力。我们还介绍了本地增强的位置编码(LEPE),比现有的编码方案更好地处理本地位置信息。 LEPE自然支持任意输入分辨率,因此对下游任务特别有效和友好。 CSWIN变压器并入其具有这些设计和分层结构,展示了普通愿景任务的竞争性能。具体来说,它在ImageNet-1K上实现了85.4 \%Top-1精度,而无需任何额外的培训数据或标签,53.9盒AP和46.4掩模AP,ADE20K语义分割任务上的52.2 Miou,超过以前的状态 - 在类似的拖鞋设置下,艺术品+1.2,+2.0,+1.4和+2.0分别为+1.2,+2.0,+1.4和+2.0。通过在较大的数据集Imagenet-21k上进行前预先预订,我们在Ave20K上实现了87.5%的成像-1K和高分性能,55.7 miou。代码和模型可在https://github.com/microsoft/cswin-transformer中找到。
translated by 谷歌翻译
Very recently, a variety of vision transformer architectures for dense prediction tasks have been proposed and they show that the design of spatial attention is critical to their success in these tasks. In this work, we revisit the design of the spatial attention and demonstrate that a carefully devised yet simple spatial attention mechanism performs favorably against the state-of-the-art schemes. As a result, we propose two vision transformer architectures, namely, Twins-PCPVT and Twins-SVT. Our proposed architectures are highly efficient and easy to implement, only involving matrix multiplications that are highly optimized in modern deep learning frameworks. More importantly, the proposed architectures achieve excellent performance on a wide range of visual tasks including image-level classification as well as dense detection and segmentation. The simplicity and strong performance suggest that our proposed architectures may serve as stronger backbones for many vision tasks. Our Code is available at: https://git.io/Twins.
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
视觉变压器(VIT)触发了计算机视觉的最新和重大突破。它们的有效设计主要由计算复杂性的间接度量(即拖船)指导,但是,该指标与直接度量(例如吞吐量)具有明显的差距。因此,我们建议将目标平台上的直接速度评估作为有效VIT的设计原理。特别是,我们介绍了LITV2,这是一种简单有效的VIT,可与以更快的速度更快的不同模型大小相对现有的最新方法。 LITV2的核心是一种新型的自我发项机制,我们将其配音。希洛的灵感来自于洞察力的启发:图像中的高频捕获本地细节和低频集中在全球结构上,而多头自发项层则忽略了不同频率的特征。因此,我们建议通过将头部分为两组来解散注意力层中的高/低频模式,其中一组在每个本地窗口内通过自我关注来编码高频,而另一组则执行注意力以模拟全局关系。在每个窗口的平均低频键与输入功能图中的每个查询位置之间。从两组的有效设计中受益,我们表明希洛通过对GPU上的速度,速度和记忆消耗进行了全面测试,优于现有的注意机制。 LITV2由Hilo提供支持,是主流视觉任务的强大主链,包括图像分类,密集检测和分割。代码可从https://github.com/ziplab/litv2获得。
translated by 谷歌翻译
视觉变压器(VIT)最近在一系列计算机视觉任务中占据了主导地位,但训练数据效率低下,局部语义表示能力较低,而没有适当的电感偏差。卷积神经网络(CNNS)固有地捕获了区域感知语义,激发了研究人员将CNN引入VIT的架构中,以为VIT提供理想的诱导偏见。但是,嵌入在VIT中的微型CNN实现的位置是否足够好?在本文中,我们通过深入探讨混合CNNS/VIT的宏观结构如何增强层次VIT的性能。特别是,我们研究了令牌嵌入层,别名卷积嵌入(CE)的作用,并系统地揭示了CE如何在VIT中注入理想的感应偏置。此外,我们将最佳CE配置应用于最近发布的4个最先进的Vits,从而有效地增强了相应的性能。最后,释放了一个有效的混合CNN/VIT家族,称为CETNET,可以用作通用的视觉骨架。具体而言,CETNET在Imagenet-1K上获得了84.9%的TOP-1准确性(从头开始训练),可可基准上的48.6%的盒子地图和ADE20K上的51.6%MIOU,从而显着提高了相应的最新态度的性能。艺术基线。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
本文提出了RESTV2,这是一种更简单,更快,更强的多尺度视觉变压器,用于视觉识别。 RESTV2简化了RESTV1中的EMSA结构(即消除了多头相互作用零件),并采用了upplame操作来重建由下采样操作引起的丢失的中等和高频信息。此外,我们探索了不同的技术,以更好地将RESTV2骨架应用于下游任务。我们发现,尽管将EMSAV2和窗户注意力结合起来可以大大减少理论矩阵乘数拖台,但它可能会大大降低计算密度,从而导致较低的实际速度。我们全面验证RESTV2在Imagenet分类,可可检测和ADE20K语义分割方面。实验结果表明,所提出的RESTV2可以大幅度优于最近最新的骨干,这表明RESTV2作为固体骨架的潜力。代码和模型将在\ url {https://github.com/wofmanaf/rest}公开可用
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
近期视觉变压器〜(VIT)模型在各种计算机视觉任务中展示了令人鼓舞的结果,因为他们的竞争力通过自我关注建模图像补丁或令牌的长距离依赖性。然而,这些模型通常指定每层中每个令牌特征的类似场景。这种约束不可避免地限制了每个自我注意层在捕获多尺度特征中的能力,从而导致处理具有不同尺度的多个对象的图像的性能下降。为了解决这个问题,我们提出了一种新颖和通用的策略,称为分流的自我关注〜(SSA),它允许VITS为每个关注层的混合秤的关注进行模拟。 SSA的关键概念是将异构接收领域的尺寸注入令牌:在计算自我注意矩阵之前,它选择性地合并令牌以表示较大的对象特征,同时保持某些令牌以保持细粒度的特征。这种新颖的合并方案能够自我注意,以了解具有不同大小的对象之间的关系,并同时降低令牌数字和计算成本。各种任务的广泛实验表明了SSA的优越性。具体而言,基于SSA的变压器实现了84.0 \%的前1个精度,并且在ImageNet上占据了最先进的焦距变压器,只有一半的模型尺寸和计算成本,并且在Coco上超过了焦点变压器1.3映射2.9 MIOU在ADE20K上类似参数和计算成本。代码已在https://github.com/oliverrensu/shunted-transformer发布。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
最近,变形金刚在各种视觉任务中表现出具有很大的表现。为了降低全球自我关注引起的二次计算复杂性,各种方法限制了本地区域内的注意范围以提高其效率。因此,单个注意层中的接收领域不够大,导致上下文建模不足。为了解决这个问题,我们提出了一种浅色的自我关注(PS-Legution),这在浅层形状的地区内进行自我关注。与全球自我关注相比,PS-Peponsion可以显着降低计算和内存成本。同时,它可以通过以前的本地自我关注机制捕获类似的计算复杂性下的更丰富的上下文信息。根据PS-Intension,我们开发了一个具有分层架构的一般视觉变压器骨干,名为苍白变压器,其达到83.4%,84.3%和84.9%的前1个精度,分别为22米,48米和85米对于224个Imagenet-1K分类,优于上一个视觉变压器骨干板。对于下游任务,我们的苍白变压器骨干在ADE20K语义分割和Coco对象检测和实例分割中,我们的苍白变压器骨干比最近最近的最新的克斯卡文变压器表现更好。代码将在https://github.com/br -dl/paddlevit上发布。
translated by 谷歌翻译
最近,Vision Transformer通过推动各种视觉任务的最新技术取得了巨大的成功。视觉变压器中最具挑战性的问题之一是,图像令牌的较大序列长度会导致高计算成本(二次复杂性)。解决此问题的一个流行解决方案是使用单个合并操作来减少序列长度。本文考虑如何改善现有的视觉变压器,在这种变压器中,单个合并操作提取的合并功能似乎不太强大。为此,我们注意到,由于其在上下文抽象中的强大能力,金字塔池在各种视觉任务中已被证明是有效的。但是,在骨干网络设计中尚未探索金字塔池。为了弥合这一差距,我们建议在视觉变压器中将金字塔池汇总到多头自我注意力(MHSA)中,同时降低了序列长度并捕获强大的上下文特征。我们插入了基于池的MHSA,我们构建了一个通用视觉变压器主链,称为金字塔池变压器(P2T)。广泛的实验表明,与先前的基于CNN-和基于变压器的网络相比,当将P2T用作骨干网络时,它在各种视觉任务中显示出很大的优势。该代码将在https://github.com/yuhuan-wu/p2t上发布。
translated by 谷歌翻译
在本文中,我们将多尺度视觉变压器(MVIT)作为图像和视频分类的统一架构,以及对象检测。我们提出了一种改进的MVIT版本,它包含分解的相对位置嵌入和残余汇集连接。我们以五种尺寸实例化此架构,并评估Imagenet分类,COCO检测和动力学视频识别,在此优先效果。我们进一步比较了MVITS的汇集注意力来窗口注意力机制,其中它在准确性/计算中优于后者。如果没有钟声,MVIT在3个域中具有最先进的性能:ImageNet分类的准确性为88.8%,Coco对象检测的56.1盒AP和动力学-400视频分类的86.1%。代码和模型将公开可用。
translated by 谷歌翻译
先前的工作提出了几种策略,以降低自我发挥机制的计算成本。这些作品中的许多作品都考虑将自我关注程序分解为区域和局部特征提取程序,这些程序都会产生较小的计算复杂性。但是,区域信息通常仅以损失的不良信息为代价,原因是由于下采样而丢失。在本文中,我们提出了一种新颖的变压器体系结构,旨在减轻成本问题,称为双视觉变压器(双击)。新的体系结构结合了一个关键的语义途径,可以更有效地将代币向量压缩到具有降低的复杂性顺序的全球语义中。然后,这种压缩的全局语义是通过另一个构造的像素途径在学习更精细的像素级详细信息中作为有用的先前信息。然后将语义途径和像素途径集成在一起并进行联合训练,从而通过这两个途径并行传播增强的自我运动信息。此后,双攻击能够降低计算复杂性,而不会损害很大的准确性。我们从经验上证明,双重射击比SOTA变压器体系结构具有较高的训练复杂性。源代码可在\ url {https://github.com/yehli/imagenetmodel}中获得。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
We present the Group Propagation Vision Transformer (GPViT): a novel nonhierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped together by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped features; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 outperforms Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at https://github.com/ChenhongyiYang/GPViT .
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
变压器已成为深度学习中的主导架构之一,特别是计算机视觉中的卷积神经网络(CNNS)的强大替代品。然而,由于长期表示的自我关注的二次复杂性,以前作品中的变压器培训和推理可能是非常昂贵的,特别是对于高分辨率密集预测任务。为此,我们提出了一种更少的关注视觉变压器(点亮),建立在变形金刚的早期自我注意层仍然专注于当地模式并在最近的等级视觉变压器中带来轻微的益处。具体而言,我们提出了一种分层变压器,在那里我们使用纯多层的感知(MLP)来在早期阶段编码丰富的本地模式,同时应用自我注意模块来捕获更深层中的较长依赖性。此外,我们进一步提出了一种学习的可变形的令牌合并模块,以以非均匀方式自适应地熔化信息贴片。建议的点亮在图像识别任务中实现了有希望的性能,包括图像分类,对象检测和实例分段,作为许多愿景任务的强骨干。代码可用:https://github.com/zhuang-group/lit
translated by 谷歌翻译