尽管生成的对抗网络能够综合面部,猫,风景或几乎任何其他单一类别的高度逼真的图像,但逐文的油漆综合引擎可以 - 从单个文本提示中 - 合成具有无休止的类别的现实图像,与看似无尽的类别合成任意配置和组合。这项强大的技术为照片法医社区带来了新的挑战。由于文本的油漆不是基于明确的几何或物理模型,以及人类视觉系统对照明不一致的普遍不敏感的事实,我们提供了对DALL-E-2合成图像的照明一致性的初步探索基于基于法医的分析将证明在检测这种新的合成介质时富有成果。
translated by 谷歌翻译
键入“约翰内斯·威默尔(Johannes Vermeer)的珍珠耳环的海獭”或“时代广场上滑板上的泰迪熊的照片”中的openai的dall-e-e-2 by Text合成引擎中的照片,您不会对您不会感到失望令人愉悦且令人愉悦的结果。合成高度逼真的图像的能力 - 除了我们的想象力外,似乎没有其他限制 - 一定会产生许多令人兴奋和创造性的应用。这些图像也可能会对照片法医社区构成新的挑战。由于文本的油漆不是基于明确的几何建模,而人类视觉系统通常忽略了几何不一致的事实,我们提供了对DALL-E-2合成图像的观点一致性的初步探索基于基于法医的分析将证明在检测这种新的合成介质时富有成果。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.
translated by 谷歌翻译
推断从单个图像的场景照明是计算机视觉和计算机图形中的必不可少的且挑战性的任务。通过回归代表照明参数或直接生成照明映射来估计照明。然而,这些方法通常遭受差的准确性和泛化。本文介绍了几何移动器的光(GMLight),一种采用回归网络和用于有效照明估计的生成投影仪的照明估计框架。我们根据几何光分布,光强度,环境术语和辅助深度参数化照明场景,这可以由回归网络估计。灵感来自地球移动器的距离,我们设计了一种新颖的几何动力损失,以指导光分布参数的准确回归。利用估计的光参数,生成投影机用现实的外观和高频细节合成全景照明图。广泛的实验表明,GALLIVEVES实现了准确的照明估计和卓越的保真度,在欣赏3D对象插入时。该代码可在\ href {https://github.com/fnzhan/illumination- istimation} {https://github.com/fnzhan/illumination-istimation}。
translated by 谷歌翻译
鉴于一个人的肖像图像和目标照明的环境图,肖像重新旨在重新刷新图像中的人,就好像该人出现在具有目标照明的环境中一样。为了获得高质量的结果,最近的方法依靠深度学习。一种有效的方法是用高保真输入输出对的高保真数据集监督对深神经网络的培训,并以光阶段捕获。但是,获取此类数据需要昂贵的特殊捕获钻机和耗时的工作,从而限制了对少数机智的实验室的访问。为了解决限制,我们提出了一种新方法,该方法可以与最新的(SOTA)重新确定方法相提并论,而无需光阶段。我们的方法基于这样的意识到,肖像图像的成功重新重新取决于两个条件。首先,该方法需要模仿基于物理的重新考虑的行为。其次,输出必须是逼真的。为了满足第一个条件,我们建议通过通过虚拟光阶段生成的训练数据来训练重新网络,该培训数据在不同的环境图下对各种3D合成人体进行了基于物理的渲染。为了满足第二种条件,我们开发了一种新型的合成对真实方法,以将光真实主义带入重新定向网络输出。除了获得SOTA结果外,我们的方法还提供了与先前方法相比的几个优点,包括可控的眼镜和更暂时的结果以重新欣赏视频。
translated by 谷歌翻译
照片中的户外场景的照片拟实的编辑需要对图像形成过程的深刻理解和场景几何,反射和照明的准确估计。然后可以在保持场景Albedo和几何形状的同时进行照明的微妙操纵。我们呈现NERF-OSR,即,基于神经辐射场的户外场景复兴的第一种方法。与现有技术相比,我们的技术允许仅使用在不受控制的设置中拍摄的户外照片集合的场景照明和相机视点。此外,它能够直接控制通过球面谐波模型所定义的场景照明。它还包括用于阴影再现的专用网络,这对于高质量的室外场景致密至关重要。为了评估所提出的方法,我们收集了几个户外站点的新基准数据集,其中每个站点从多个视点拍摄和不同的时间。对于每个定时,360度环境映射与颜色校准Chequerboard一起捕获,以允许对实际真实的真实数据进行准确的数值评估。反对本领域的状态的比较表明,NERF-OSR能够以更高的质量和逼真的自阴影再现来实现可控的照明和视点编辑。我们的方法和数据集将在https://4dqv.mpi-inf.mpg.de/nerf-OSR/上公开可用。
translated by 谷歌翻译
虽然虚拟生产系统中使用的LED面板可以显示出宽阔的颜色范围的充满活力的图像,但由于狭窄带红色,绿色和蓝色LED的峰值光谱输出,它们在用作照明时会产生有问题的颜色转移。在这项工作中,我们为虚拟生产阶段提供了改进的颜色校准过程,可改善此颜色演绎问题,同时还通过准确的相机内背景颜色。我们通过优化1)在相机视野中可见的LED面板像素来完成此操作,2)相机视野外的像素照亮了对象,并作为后处理,3)相机记录的像素值。结果是,在RGB LED面板虚拟生产阶段拍摄的镜头可以表现出更准确的肤色和服装颜色,同时仍然重现相机内背景的所需颜色。
translated by 谷歌翻译
我们提出了一种从单个图像中编辑复杂室内照明的方法,其深度和光源分割掩码。这是一个极具挑战性的问题,需要对复杂的光传输进行建模,并仅通过对场景的部分LDR观察,将HDR照明从材料和几何形状中解散。我们使用两个新颖的组件解决了这个问题:1)一种整体场景重建方法,该方法估计场景反射率和参数3D照明,以及2)一个神经渲染框架,从我们的预测中重新呈现场景。我们使用基于物理的室内光表示,可以进行直观的编辑,并推断可见和看不见的光源。我们的神经渲染框架结合了基于物理的直接照明和阴影渲染,深层网络近似于全球照明。它可以捕获具有挑战性的照明效果,例如柔软的阴影,定向照明,镜面材料和反射。以前的单个图像逆渲染方法通常纠缠场景照明和几何形状,仅支持对象插入等应用程序。取而代之的是,通过将参数3D照明估计与神经场景渲染相结合,我们演示了从单个图像中实现完整场景重新确定(包括光源插入,删除和替换)的第一种自动方法。所有源代码和数据将公开发布。
translated by 谷歌翻译
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal. In this paper, we propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images. We first estimate camera poses and an initial 3D model by geometric reconstruction with a standard structure-from-motion and multi-view stereo pipeline. We then refine the initial model by optimizing photometric rendering errors and polarimetric errors using multi-view RGB, AoP, and DoP images, where we propose a novel polarimetric cost function that enables an effective constraint on the estimated surface normal of each vertex, while considering four possible ambiguous azimuth angles revealed from the AoP measurement. The weight for the polarimetric cost is effectively determined based on the DoP measurement, which is regarded as the reliability of polarimetric information. Experimental results using both synthetic and real data demonstrate that our Polarimetric MVIR can reconstruct a detailed 3D shape without assuming a specific surface material and lighting condition.
translated by 谷歌翻译
逆渲染是一个不适的问题。以前的工作试图通过重点关注对象或场景形状或外观的先验来解决这一问题。在这项工作中,我们专注于自然照明的先验。当前方法依赖于球形谐波照明或其他通用表示,充其量是参数的简单先验。我们提出了一个有条件的神经场表示,基于带有警报网络的变异自动描述器,并扩展向量神经元,直接将其构建到网络中。使用此功能,我们开发了一个旋转等值的高动态范围(HDR)神经照明模型,该模型紧凑并且能够表达自然环境图的复杂,高频特征。在自然场景的1.6k HDR环境图的策划数据集上训练我们的模型,我们将其与传统表示形式进行了比较,证明了其适用于反向渲染任务,并通过部分观察显示了环境图的完成。可以在jadgardner.github.io/reni上找到我们的数据集和训练有素的模型。
translated by 谷歌翻译
创建高质量的动画和可重新可靠的3D人体化身的独特挑战是对人的眼睛进行建模。合成眼睛的挑战是多重的,因为它需要1)适当的表示眼和眼周区域的适当表示,以进行连贯的视点合成,能够表示弥漫性,折射和高度反射表面,2)2)脱离皮肤和眼睛外观这样的照明使其可以在新的照明条件下呈现,3)捕获眼球运动和周围皮肤的变形以使重新注视。传统上,这些挑战需要使用昂贵且繁琐的捕获设置来获得高质量的结果,即使那样,整体上的眼睛区域建模仍然难以捉摸。我们提出了一种新颖的几何形状和外观表示形式,该形式仅使用一组稀疏的灯光和摄像头,可以捕获高保真的捕获和感性动画,观察眼睛区域的综合和重新定位。我们的杂种表示将眼球的显式参数表面模型与眼周区域和眼内部的隐式变形体积表示结合在一起。这种新颖的混合模型旨在解决具有挑战性的面部面积的各个部分 - 明确的眼球表面允许在角膜处建模折射和高频镜面反射,而隐性表示非常适合通过模拟低频皮肤反射。球形谐波可以代表非表面结构,例如头发或弥漫性体积物体,这两者都是显式表面模型的挑战。我们表明,对于高分辨率的眼睛特写,我们的模型可以从看不见的照明条件下的新颖观点中综合高保真动画的目光。
translated by 谷歌翻译
Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2K high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks.
translated by 谷歌翻译
我们解决了从由一个未知照明条件照射的物体的多视图图像(及其相机姿势)从多视图图像(和它们的相机姿势)恢复物体的形状和空间变化的空间变化的问题。这使得能够在任意环境照明下呈现对象的新颖视图和对象的材料属性的编辑。我们呼叫神经辐射分解(NERFVERTOR)的方法的关键是蒸馏神经辐射场(NERF)的体积几何形状[MILDENHALL等人。 2020]将物体表示为表面表示,然后在求解空间改变的反射率和环境照明时共同细化几何形状。具体而言,Nerfactor仅使用重新渲染丢失,简单的光滑度Provers以及从真实学中学到的数据驱动的BRDF而无任何监督的表面法线,光可视性,Albedo和双向反射率和双向反射分布函数(BRDF)的3D神经领域-world brdf测量。通过显式建模光可视性,心脏请能够将来自Albedo的阴影分离,并在任意照明条件下合成现实的软或硬阴影。 Nerfactor能够在这场具有挑战性和实际场景的挑战和捕获的捕获设置中恢复令人信服的3D模型进行令人满意的3D模型。定性和定量实验表明,在各种任务中,内容越优于基于经典和基于深度的学习状态。我们的视频,代码和数据可在peoptom.csail.mit.edu/xiuming/projects/nerfactor/上获得。
translated by 谷歌翻译
We present a method that takes as input a set of images of a scene illuminated by unconstrained known lighting, and produces as output a 3D representation that can be rendered from novel viewpoints under arbitrary lighting conditions. Our method represents the scene as a continuous volumetric function parameterized as MLPs whose inputs are a 3D location and whose outputs are the following scene properties at that input location: volume density, surface normal, material parameters, distance to the first surface intersection in any direction, and visibility of the external environment in any direction. Together, these allow us to render novel views of the object under arbitrary lighting, including indirect illumination effects. The predicted visibility and surface intersection fields are critical to our model's ability to simulate direct and indirect illumination during training, because the brute-force techniques used by prior work are intractable for lighting conditions outside of controlled setups with a single light. Our method outperforms alternative approaches for recovering relightable 3D scene representations, and performs well in complex lighting settings that have posed a significant challenge to prior work.
translated by 谷歌翻译
我们展示了如何将一个对象从一个图像插入到另一个图像,并在硬情况下获得现实的结果,其中插入的对象的阴影与场景的阴影冲突。使用场景的照明模型渲染对象不起作用,因为这样做需要对象的几何和材料模型,这很难从单个图像中恢复。在本文中,我们介绍了一种方法,该方法可以纠正插入对象的阴影不一致,而无需几何和物理模型或环境图。我们的方法使用了深层图像先验(DIP),训练有素,可以通过一致的图像分解推理损耗来产生插入对象的重新添加效果。来自DIP的最终图像的目的是具有(a)类似于切割和贴合的反照率的反照率,(b)与目标场景相似的阴影场,以及(c)与切割 - 剪裁一致的阴影和帕斯特表面正常。结果是一个简单的过程,可以产生插入对象的令人信服的阴影。我们在定性和定量上对具有复杂表面特性的几个对象以及球形灯罩数据集进行定量评估的疗效。我们的方法明显优于所有这些对象的图像协调(IH)基线。在用100多名用户的用户研究中,他们还胜过剪切和IH基线。
translated by 谷歌翻译
在过去几年中,许多面部分析任务已经完成了惊人的性能,其中应用包括来自单个“野外”图像的面部生成和3D面重建。尽管如此,据我们所知,没有方法可以从“野外”图像中产生渲染的高分辨率3D面,并且这可以归因于:(a)可用数据的跨度进行培训(b)缺乏可以成功应用于非常高分辨率数据的强大方法。在这项工作中,我们介绍了一种能够从单个“野外”图像中重建光电型渲染3D面部几何和BRDF的第一种方法。我们捕获了一个大型的面部形状和反射率,我们已经公开了。我们用精确的面部皮肤漫射和镜面反射,自遮挡和地下散射近似来定义快速面部光电型拟型渲染方法。有了这一点,我们训练一个网络,将面部漫射和镜面BRDF组件与烘焙照明的形状和质地一起脱颖而出,以最先进的3DMM配件方法重建。我们的方法通过显着的余量优于现有技术,并从单个低分辨率图像重建高分辨率3D面,这可以在各种应用中呈现,并桥接不一体谷。
translated by 谷歌翻译
神经辐射场(NERF)是一种普遍的视图综合技术,其表示作为连续体积函数的场景,由多层的感知来参数化,其提供每个位置处的体积密度和视图相关的发射辐射。虽然基于NERF的技术在代表精细的几何结构时,具有平稳变化的视图依赖性外观,但它们通常无法精确地捕获和再现光泽表面的外观。我们通过引入Ref-nerf来解决这些限制,该ref-nerf替换了nerf的视图依赖性输出辐射的参数化,使用反射辐射的表示和使用空间不同场景属性的集合来构造该函数的表示。我们展示了与正常载体上的规范器一起,我们的模型显着提高了镜面反射的现实主义和准确性。此外,我们表明我们的模型的外向光线的内部表示是可解释的,可用于场景编辑。
translated by 谷歌翻译
Google Research Basecolor Metallic Roughness Normal Multi-View Images NeRD Volume Decomposed BRDF Relighting & View synthesis Textured MeshFigure 1: Neural Reflectance Decomposition for Relighting. We encode multiple views of an object under varying or fixed illumination into the NeRD volume.We decompose each given image into geometry, spatially-varying BRDF parameters and a rough approximation of the incident illumination in a globally consistent manner. We then extract a relightable textured mesh that can be re-rendered under novel illumination conditions in real-time.
translated by 谷歌翻译
Specularity prediction is essential to many computer vision applications, giving important visual cues usable in Augmented Reality (AR), Simultaneous Localisation and Mapping (SLAM), 3D reconstruction and material modeling. However, it is a challenging task requiring numerous information from the scene including the camera pose, the geometry of the scene, the light sources and the material properties. Our previous work addressed this task by creating an explicit model using an ellipsoid whose projection fits the specularity image contours for a given camera pose. These ellipsoid-based approaches belong to a family of models called JOint-LIght MAterial Specularity (JOLIMAS), which we have gradually improved by removing assumptions on the scene geometry. However, our most recent approach is still limited to uniformly curved surfaces. This paper generalises JOLIMAS to any surface geometry while improving the quality of specularity prediction, without sacrificing computation performances. The proposed method establishes a link between surface curvature and specularity shape in order to lift the geometric assumptions made in previous work. Contrary to previous work, our new model is built from a physics-based local illumination model namely Torrance-Sparrow, providing an improved reconstruction. Specularity prediction using our new model is tested against the most recent JOLIMAS version on both synthetic and real sequences with objects of various general shapes. Our method outperforms previous approaches in specularity prediction, including the real-time setup, as shown in the supplementary videos.
translated by 谷歌翻译