结构化修剪是一种降低卷积神经网络成本的流行方法,这是许多计算机视觉任务中最先进的方法。但是,根据体系结构,修剪会引入维数差异,以防止实际减少修剪的网络。为了解决这个问题,我们提出了一种能够采用任何结构化的修剪面膜并生成一个不会遇到这些问题的网络并可以有效利用的网络。我们提供了对解决方案的准确描述,并显示了嵌入式硬件,修剪卷积神经网络的能源消耗和推理时间的增长结果。
translated by 谷歌翻译
在许多计算机视觉任务中,深度神经网络是最新的。它们在自动驾驶汽车的背景下的部署特别令人感兴趣,因为它们在能源消耗方面的局限性禁止使用非常大的网络,这通常达到最佳性能。在不牺牲准确性的情况下,降低这些体系结构的复杂性的一种常见方法是依靠修剪,其中消除了最不重要的部分。关于该主题有很多文献,但有趣的是,很少有作品衡量修剪对能源的实际影响。在这项工作中,我们有兴趣使用CityScapes数据集在语义细分的特定语义细分中对其进行测量。为此,我们分析了最近提出的结构化修剪方法的影响,当训练有素的体系结构被部署在Jetson Xavier嵌入式GPU上。
translated by 谷歌翻译
The success of CNNs in various applications is accompanied by a significant increase in the computation and parameter storage costs. Recent efforts toward reducing these overheads involve pruning and compressing the weights of various layers without hurting original accuracy. However, magnitude-based pruning of weights reduces a significant number of parameters from the fully connected layers and may not adequately reduce the computation costs in the convolutional layers due to irregular sparsity in the pruned networks. We present an acceleration method for CNNs, where we prune filters from CNNs that are identified as having a small effect on the output accuracy. By removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly. In contrast to pruning weights, this approach does not result in sparse connectivity patterns. Hence, it does not need the support of sparse convolution libraries and can work with existing efficient BLAS libraries for dense matrix multiplications. We show that even simple filter pruning techniques can reduce inference costs for VGG-16 by up to 34% and ResNet-110 by up to 38% on CIFAR10 while regaining close to the original accuracy by retraining the networks.
translated by 谷歌翻译
由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译
现代深度神经网络往往太大而无法在许多实际情况下使用。神经网络修剪是降低这种模型的大小的重要技术和加速推断。Gibbs修剪是一种表达和设计神经网络修剪方法的新框架。结合统计物理和随机正则化方法的方法,它可以同时培训和修剪网络,使得学习的权重和修剪面膜彼此很好地适应。它可用于结构化或非结构化修剪,我们为每个提出了许多特定方法。我们将拟议的方法与许多当代神经网络修剪方法进行比较,发现Gibbs修剪优于它们。特别是,我们通过CIFAR-10数据集来实现修剪Reset-56的新型最先进的结果。
translated by 谷歌翻译
We propose a new formulation for pruning convolutional kernels in neural networks to enable efficient inference. We interleave greedy criteria-based pruning with finetuning by backpropagation-a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on Taylor expansion that approximates the change in the cost function induced by pruning network parameters. We focus on transfer learning, where large pretrained networks are adapted to specialized tasks. The proposed criterion demonstrates superior performance compared to other criteria, e.g. the norm of kernel weights or feature map activation, for pruning large CNNs after adaptation to fine-grained classification tasks (Birds-200 and Flowers-102) relaying only on the first order gradient information. We also show that pruning can lead to more than 10× theoretical reduction in adapted 3D-convolutional filters with a small drop in accuracy in a recurrent gesture classifier. Finally, we show results for the largescale ImageNet dataset to emphasize the flexibility of our approach.
translated by 谷歌翻译
在本文中,我们提出了用于卷积神经网络的可分散的信道稀疏性搜索(DCS)。与需要用户手动设置每个卷积层的紫星比的传统信道修剪算法不同,DCSS自动搜索稀疏的最佳组合。灵感来自可怜的架构搜索(飞镖),我们从连续放松中汲取课程,并利用梯度信息来平衡计算成本和指标。由于直接应用飞镖方案引起形状不匹配和过度的记忆消耗,因此在过滤器内引入一种名为重量共享的新技术。这种技术优雅地消除了具有可忽略额外资源的形状不匹配的问题。我们不仅开展全面的实验,不仅是图像分类,还可以找到包括语义分割和图像超分辨率的粒度任务,以验证DCSS的有效性。与以前的网络修剪方法相比,DCSS实现了图像分类的最先进结果。语义分割和图像超分辨率的实验结果表明,特定于任务特定搜索的性能比转移超薄模型实现了更好的性能,展示了广泛的适用性和高效率的DCSS。
translated by 谷歌翻译
重量修剪是一种有效的模型压缩技术,可以解决在移动设备上实现实时深神经网络(DNN)推断的挑战。然而,由于精度劣化,难以利用硬件加速度,以及某些类型的DNN层的限制,难以降低的应用方案具有有限的应用方案。在本文中,我们提出了一般的细粒度的结构化修剪方案和相应的编译器优化,适用于任何类型的DNN层,同时实现高精度和硬件推理性能。随着使用我们的编译器优化所支持的不同层的灵活性,我们进一步探讨了确定最佳修剪方案的新问题,了解各种修剪方案的不同加速度和精度性能。两个修剪方案映射方法,一个是基于搜索,另一个是基于规则的,建议自动推导出任何给定DNN的每层的最佳修剪规则和块大小。实验结果表明,我们的修剪方案映射方法,以及一般细粒化结构修剪方案,优于最先进的DNN优化框架,最高可达2.48 $ \ times $和1.73 $ \ times $ DNN推理加速在CiFar-10和Imagenet DataSet上没有准确性损失。
translated by 谷歌翻译
卷积神经网络(CNN)已在许多物联网(IoT)设备中应用于多种下游任务。但是,随着边缘设备上的数据量的增加,CNN几乎无法及时完成某些任务,而计算和存储资源有限。最近,过滤器修剪被认为是压缩和加速CNN的有效技术,但是从压缩高维张量的角度来看,现有的方法很少是修剪CNN。在本文中,我们提出了一种新颖的理论,可以在三维张量中找到冗余信息,即量化特征图(QSFM)之间的相似性,并利用该理论来指导滤波器修剪过程。我们在数据集(CIFAR-10,CIFAR-100和ILSVRC-12)上执行QSFM和Edge设备,证明所提出的方法可以在神经网络中找到冗余信息,具有可比的压缩和可耐受的准确性下降。没有任何微调操作,QSFM可以显着压缩CIFAR-56(48.7%的Flops和57.9%的参数),而TOP-1的准确性仅损失0.54%。对于边缘设备的实际应用,QSFM可以将Mobilenet-V2推理速度加速1.53倍,而ILSVRC-12 TOP-1的精度仅损失1.23%。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
网络压缩对于使深网的效率更高,更快且可推广到低端硬件至关重要。当前的网络压缩方法有两个开放问题:首先,缺乏理论框架来估计最大压缩率;其次,有些层可能会过多地进行,从而导致网络性能大幅下降。为了解决这两个问题,这项研究提出了一种基于梯度矩阵分析方法,以估计最大网络冗余。在最大速率的指导下,开发了一种新颖而有效的层次网络修剪算法,以最大程度地凝结神经元网络结构而无需牺牲网络性能。进行实质性实验以证明新方法修剪几个高级卷积神经网络(CNN)体系结构的功效。与现有的修剪方法相比,拟议的修剪算法实现了最先进的性能。与其他方法相比,在相同或相似的压缩比下,新方法提供了最高的网络预测准确性。
translated by 谷歌翻译
Structured channel pruning has been shown to significantly accelerate inference time for convolution neural networks (CNNs) on modern hardware, with a relatively minor loss of network accuracy. Recent works permanently zero these channels during training, which we observe to significantly hamper final accuracy, particularly as the fraction of the network being pruned increases. We propose Soft Masking for cost-constrained Channel Pruning (SMCP) to allow pruned channels to adaptively return to the network while simultaneously pruning towards a target cost constraint. By adding a soft mask re-parameterization of the weights and channel pruning from the perspective of removing input channels, we allow gradient updates to previously pruned channels and the opportunity for the channels to later return to the network. We then formulate input channel pruning as a global resource allocation problem. Our method outperforms prior works on both the ImageNet classification and PASCAL VOC detection datasets.
translated by 谷歌翻译
We propose an efficient and unified framework, namely ThiNet, to simultaneously accelerate and compress CNN models in both training and inference stages. We focus on the filter level pruning, i.e., the whole filter would be discarded if it is less important. Our method does not change the original network structure, thus it can be perfectly supported by any off-the-shelf deep learning libraries. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics information computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. Experimental results demonstrate the effectiveness of this strategy, which has advanced the state-of-the-art. We also show the performance of ThiNet on ILSVRC-12 benchmark. ThiNet achieves 3.31× FLOPs reduction and 16.63× compression on VGG-16, with only 0.52% top-5 accuracy drop. Similar experiments with ResNet-50 reveal that even for a compact network, ThiNet can also reduce more than half of the parameters and FLOPs, at the cost of roughly 1% top-5 accuracy drop. Moreover, the original VGG-16 model can be further pruned into a very small model with only 5.05MB model size, preserving AlexNet level accuracy but showing much stronger generalization ability.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
过滤器修剪的目标是搜索不重要的过滤器以删除以便使卷积神经网络(CNNS)有效而不牺牲过程中的性能。挑战在于找到可以帮助确定每个过滤器关于神经网络的最终输出的重要或相关的信息的信息。在这项工作中,我们分享了我们的观察说,预先训练的CNN的批量标准化(BN)参数可用于估计激活输出的特征分布,而无需处理训练数据。在观察时,我们通过基于预先训练的CNN的BN参数评估每个滤波器的重要性来提出简单而有效的滤波修剪方法。 CiFar-10和Imagenet的实验结果表明,该方法可以在准确性下降和计算复杂性的计算复杂性和降低的折衷方面具有和不进行微调的卓越性能。
translated by 谷歌翻译
过滤器修剪方法通过去除选定的过滤器来引入结构稀疏性,因此对于降低复杂性特别有效。先前的作品从验证较小规范的过滤器的角度从经验修剪网络中造成了较小的最终结果贡献。但是,此类标准已被证明对过滤器的分布敏感,并且由于修剪后的容量差距是固定的,因此准确性可能很难恢复。在本文中,我们提出了一种称为渐近软簇修剪(ASCP)的新型过滤器修剪方法,以根据过滤器的相似性来识别网络的冗余。首先通过聚类来区分来自参数过度的网络的每个过滤器,然后重建以手动将冗余引入其中。提出了一些聚类指南,以更好地保留特征提取能力。重建后,允许更新过滤器,以消除错误选择的效果。此外,还采用了各种修剪率的衰减策略来稳定修剪过程并改善最终性能。通过逐渐在每个群集中生成更相同的过滤器,ASCP可以通过通道添加操作将其删除,几乎没有准确性下降。 CIFAR-10和Imagenet数据集的广泛实验表明,与许多最新算法相比,我们的方法可以取得竞争性结果。
translated by 谷歌翻译
通道修剪用于减少卷积神经网络(CNN)中的权重次数。通道修剪去除重量张量的切片,从而使卷积层保持密集。从单层中去除这些重量切片会导致网络层之间的特征图数不匹配。一个简单的解决方案是迫使图层之间的特征映射数量通过从后续层中去除重量切片来匹配。在带有分支的DNN中,这种附加约束变得更加明显,其中需要将多个通道整理在一起以保持网络密度。流行的修剪显着性指标并不能考虑具有分支的DNN中产生的结构依赖性。我们建议多米诺骨牌指标(基于现有的渠道显着性指标)来反映这些结构性约束。我们测试了具有分支的多个网络上基线通道显着性指标的测试。 Domino显着性指标提高了大多数经过测试的网络的修剪率,在CIFAR-10上,Alexnet中最多可提高25%。
translated by 谷歌翻译
已知神经模型被过度参数化,最近的工作表明,稀疏的文本到语音(TTS)模型可以超过密集的模型。尽管已经为其他域提出了大量稀疏方法,但这种方法很少在TTS中应用。在这项工作中,我们试图回答以下问题:所选稀疏技术在性能和模型复杂性上的特征是什么?我们比较了Tacotron2基线和应用五种技术的结果。然后,我们通过自然性,清晰度和韵律来评估表现,同时报告模型规模和训练时间。与先前的研究相辅相成,我们发现在训练之前或期间进行修剪可以实现与训练后的修剪相似的性能,并且可以更快地进行培训,同时除去整个神经元降低了性能远不止于删除参数。据我们所知,这是比较文本到语音综合中稀疏范式的第一部作品。
translated by 谷歌翻译