多发性硬化症(MS)是一种慢性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体减弱的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的后续大脑FLAIR MRI为临床医生提供了有用的信息,以监测疾病进展。在这项研究中,我们提出了对生成对抗网络(GAN)的新颖修饰,以预测MS以固定时间间隔的MS预测未来病变特异性MRI。我们在鉴别器中使用受监督的引导注意力和扩张卷积,该歧视者支持对生成图像是否实现的明智预测,这是基于对病变区域的关注,这反过来又有可能帮助改善生成器以预测病变区域将来的考试更准确。我们将我们的方法与几个基线和一种最先进的CF-Sagan模型进行了比较[1]。总之,我们的结果表明,与其他总体性能相似的模型相比,所提出的方法可实现更高的准确性,并减少病变区域预测误差的标准偏差。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性进行性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体体面的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的纵向脑感状MRI,涉及随着时间的推移重复对患者进行成像,为临床医生提供了有用的信息,以监测疾病进展。仅在有限的应用中尝试预测未来的整个大脑MRI检查,例如在有限的应用中,例如在阿尔茨海默氏病中的健康衰老和结构性变性。在本文中,我们为MS Flair图像合成的深度学习体系结构提供了新的修改,以支持以灵活的连续方式支持纵向图像的预测。这是通过学习的转移卷积来实现的,该卷积将建模时间作为空间分布的阵列,在不同的空间位置具有可变的时间特性。因此,这种方法理论上可以对空间特定的时间依赖性大脑发育进行建模,从而支持在适当的物理位置(例如MS脑损伤部位)建模更快的生长。这种方法还支持临床医生用户定义预测考试应针对的未来。对未来成像的准确预测可以为临床医生提供潜在的患者预后,这可能有助于早期治疗和更好的预后。已经开发了四个不同的深度学习体系结构。 ISBI2015纵向MS数据集用于验证和比较我们提出的方法。结果表明,修改后的ACGAN可实现最佳性能并降低模型准确性的可变性。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
由于受试者辍学或扫描失败,在纵向研究中不可避免地扫描是不可避免的。在本文中,我们提出了一个深度学习框架,以预测获得的扫描中缺少扫描,从而迎合纵向婴儿研究。由于快速的对比和结构变化,特别是在生命的第一年,对婴儿脑MRI的预测具有挑战性。我们引入了值得信赖的变质生成对抗网络(MGAN),用于将婴儿脑MRI从一个时间点转换为另一个时间点。MGAN具有三个关键功能:(i)图像翻译利用空间和频率信息以进行详细信息提供映射;(ii)将注意力集中在具有挑战性地区的质量指导学习策略。(iii)多尺度杂种损失函数,可改善组织对比度和结构细节的翻译。实验结果表明,MGAN通过准确预测对比度和解剖学细节来优于现有的gan。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
激光间质热疗法(LITT)是一种新型的微创治疗方法,用于烧蚀颅内结构,以治疗肠内颞叶癫痫(MTLE)。 LITT之前和之后的感兴趣区域(ROI)分割将使自动化病变定量能够客观地评估治疗疗效。深度学习技术,例如卷积神经网络(CNN)是ROI分割的最新解决方案,但在培训过程中需要大量注释的数据。但是,从LITT等新兴治疗中收集大型数据集是不切实际的。在本文中,我们提出了一个进行性脑部病变合成框架(PAVAE),以扩大训练数据集的数量和多样性。具体而言,我们的框架由两个顺序网络组成:掩模合成网络和掩模引导的病变合成网络。为了更好地利用外部信息来在网络培训期间提供额外的监督,我们设计了条件嵌入块(CEB)和掩模嵌入块(MEB),以将掩模的固有条件编码到功能空间中。最后,使用原始和合成病变图像对分割网络进行训练,以评估所提出的框架的有效性。实验结果表明,我们的方法可以实现逼真的合成结果,并在传统数据增强技术之上提高下游分割任务的性能。
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
Quantifying the perceptual similarity of two images is a long-standing problem in low-level computer vision. The natural image domain commonly relies on supervised learning, e.g., a pre-trained VGG, to obtain a latent representation. However, due to domain shift, pre-trained models from the natural image domain might not apply to other image domains, such as medical imaging. Notably, in medical imaging, evaluating the perceptual similarity is exclusively performed by specialists trained extensively in diverse medical fields. Thus, medical imaging remains devoid of task-specific, objective perceptual measures. This work answers the question: Is it necessary to rely on supervised learning to obtain an effective representation that could measure perceptual similarity, or is self-supervision sufficient? To understand whether recent contrastive self-supervised representation (CSR) may come to the rescue, we start with natural images and systematically evaluate CSR as a metric across numerous contemporary architectures and tasks and compare them with existing methods. We find that in the natural image domain, CSR behaves on par with the supervised one on several perceptual tests as a metric, and in the medical domain, CSR better quantifies perceptual similarity concerning the experts' ratings. We also demonstrate that CSR can significantly improve image quality in two image synthesis tasks. Finally, our extensive results suggest that perceptuality is an emergent property of CSR, which can be adapted to many image domains without requiring annotations.
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
诊断阿尔茨海默病(AD)的早期阶段(AD)对于及时治疗至关重要以缓慢进一步恶化。可视化广告早期阶段的形态特征是巨大的临床价值。在这项工作中,提出了一种新的多向感知生成的对抗网络(MP-GaN)来可视化表明不同阶段患者的广告严重程度的形态特征。具体地,通过将​​新的多向映射机制引入模型中,所提出的MP-GaN可以有效地捕获突出全局特征。因此,通过利用来自发电机的类别辨别图,所提出的模型可以通过源域和预定义目标域之间的MR图像变换清楚地描绘微妙的病变。此外,通过集成对抗性损失,分类损失,周期一致性损失和\ emph {l} 1惩罚,MP-GaN中的单个发电机可以学习多类的类鉴别映射。对阿尔茨海默病神经影像倡议(ADNI)数据集进行了广泛的实验结果表明,与现有方法相比,MP-GAN实现了卓越的性能。由MP-GaN可视化的病变也与临床医人观察到的一致。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
最先进的深度学习方法在分割任务中表现出令人印象深刻的性能。然而,这些方法的成功取决于大量手动标记的掩模,这是昂贵且耗时的收集。在这项工作中,提出了一种新的一致性感知的对抗网络(Cpgan),用于半监督卒中病变细分。拟议的CPGAN可以减少对完全标记的样品的依赖。具体地,设计相似性连接模块(SCM)以捕获多尺度特征的信息。所提出的SCM可以通过加权和选择性地聚合每个位置处的特征。此外,将一致的感知策略引入所提出的模型中,以增强脑卒中病变预测对未标记数据的影响。此外,构建助理网络以鼓励鉴别者学习在训练阶段期间经常被遗忘的有意义的特征表示。助理网络和鉴别者用于共同决定分割结果是否是真实的或假的。 CPGAN在中风(ATLAS)后病变的解剖学描记。实验结果表明,所提出的网络实现了卓越的分割性能。在半监督分割任务中,使用只有五分之二的标记样本的建议的CPGAN优于使用完整标记样本的一些方法。
translated by 谷歌翻译
已显示自动深度学习分割模型可提高分割效率和准确性。但是,训练强大的分割模型需要大量标记的训练样本,这可能是不切实际的。这项研究旨在开发一个深度学习框架,用于生成可用于增强网络培训的合成病变。病变合成网络是一种修改的生成对抗网络(GAN)。具体而言,我们创新了部分卷积策略来构建一个类似于Unet的发电机。该鉴别器是使用具有梯度惩罚和光谱归一化的Wasserstein GAN设计的。开发了基于主成分分析的掩模生成方法,以模拟各种病变形状。然后通过病变合成网络将生成的面膜转换为肝病。评估了病变的合成框架的病变纹理,并使用合成病变来训练病变分割网络,以进一步验证该框架的有效性。所有网络均经过LIT的公共数据集训练和测试。与所采用的两个纹理参数(GLCM-能量和GLCM相关)相比,该方法产生的合成病变具有非常相似的直方图分布。 GLCM-能量和GlCM相关的Kullback-Lebler差异分别为0.01和0.10。包括肿瘤分割网络中的合成病变包括U-NET的分割骰子性能从67.3%显着提高到71.4%(p <0.05)。同时,体积的精度和灵敏度从74.6%提高到76.0%(p = 0.23)和66.1%至70.9%(p <0.01)。合成数据可显着提高分割性能。
translated by 谷歌翻译
基于深度学习的计算机辅助诊断(CAD)已成为医疗行业的重要诊断技术,有效提高诊断精度。然而,脑肿瘤磁共振(MR)图像数据集的稀缺性导致深度学习算法的低性能。传统数据增强(DA)生成的转换图像的分布本质上类似于原始的图像,从而在泛化能力方面产生有限的性能。这项工作提高了具有结构相似性损失功能(PGGAN-SSIM)的GAN的逐步生长,以解决图像模糊问题和模型崩溃。我们还探讨了其他基于GAN的数据增强,以证明所提出的模型的有效性。我们的结果表明,PGGAN-SSIM成功地生成了256x256的现实脑肿瘤MR图像,填充了原始数据集未发现的真实图像分布。此外,PGGAN-SSSIM超过了其他基于GAN的方法,实现了FRECHET成立距离(FID)和多尺度结构相似性(MS-SSIM)的有希望的性能提升。
translated by 谷歌翻译