已显示自动深度学习分割模型可提高分割效率和准确性。但是,训练强大的分割模型需要大量标记的训练样本,这可能是不切实际的。这项研究旨在开发一个深度学习框架,用于生成可用于增强网络培训的合成病变。病变合成网络是一种修改的生成对抗网络(GAN)。具体而言,我们创新了部分卷积策略来构建一个类似于Unet的发电机。该鉴别器是使用具有梯度惩罚和光谱归一化的Wasserstein GAN设计的。开发了基于主成分分析的掩模生成方法,以模拟各种病变形状。然后通过病变合成网络将生成的面膜转换为肝病。评估了病变的合成框架的病变纹理,并使用合成病变来训练病变分割网络,以进一步验证该框架的有效性。所有网络均经过LIT的公共数据集训练和测试。与所采用的两个纹理参数(GLCM-能量和GLCM相关)相比,该方法产生的合成病变具有非常相似的直方图分布。 GLCM-能量和GlCM相关的Kullback-Lebler差异分别为0.01和0.10。包括肿瘤分割网络中的合成病变包括U-NET的分割骰子性能从67.3%显着提高到71.4%(p <0.05)。同时,体积的精度和灵敏度从74.6%提高到76.0%(p = 0.23)和66.1%至70.9%(p <0.01)。合成数据可显着提高分割性能。
translated by 谷歌翻译
Covid-19已成为全球大流行,仍然对公众产生严重的健康风险。 CT扫描中肺炎病变的准确和有效的细分对于治疗决策至关重要。我们提出了一种使用循环一致生成的对冲网络(循环GaN)的新型无监督方法,其自动化和加速病变描绘过程。工作流程包括肺体积分割,“合成”健康肺一代,感染和健康的图像减法,以及二元病变面膜创造。首先使用预先训练的U-Net划定肺体积,并作为后续网络的输入。开发了循环GaN,以产生来自受感染的肺图像的合成的“健康”肺CT图像。之后,通过从“受感染的”肺CT图像中减去合成的“健康”肺CT图像来提取肺炎病变。然后将中值过滤器和K-Means聚类应用于轮廓的病变。在两个公共数据集(冠状遗传酶和Radiopedia)上验证了自动分割方法。骰子系数分别达到0.748和0.730,用于冠状遗传酶和RadioPedia数据集。同时,对冠纳卡酶数据集的病变分割性的精度和灵敏度为0.813和0.735,以及用于Radiopedia数据集的0.773和0.726。性能与现有的监督分割网络和以前无监督的特性相当。提出的无监督分割方法在自动Covid-19病变描绘中实现了高精度和效率。分割结果可以作为进一步手动修改的基线和病变诊断的质量保证工具。此外,由于其无人自化的性质,结果不受医师经验的影响,否则对监督方法至关重要。
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
最先进的深度学习方法在分割任务中表现出令人印象深刻的性能。然而,这些方法的成功取决于大量手动标记的掩模,这是昂贵且耗时的收集。在这项工作中,提出了一种新的一致性感知的对抗网络(Cpgan),用于半监督卒中病变细分。拟议的CPGAN可以减少对完全标记的样品的依赖。具体地,设计相似性连接模块(SCM)以捕获多尺度特征的信息。所提出的SCM可以通过加权和选择性地聚合每个位置处的特征。此外,将一致的感知策略引入所提出的模型中,以增强脑卒中病变预测对未标记数据的影响。此外,构建助理网络以鼓励鉴别者学习在训练阶段期间经常被遗忘的有意义的特征表示。助理网络和鉴别者用于共同决定分割结果是否是真实的或假的。 CPGAN在中风(ATLAS)后病变的解剖学描记。实验结果表明,所提出的网络实现了卓越的分割性能。在半监督分割任务中,使用只有五分之二的标记样本的建议的CPGAN优于使用完整标记样本的一些方法。
translated by 谷歌翻译
激光间质热疗法(LITT)是一种新型的微创治疗方法,用于烧蚀颅内结构,以治疗肠内颞叶癫痫(MTLE)。 LITT之前和之后的感兴趣区域(ROI)分割将使自动化病变定量能够客观地评估治疗疗效。深度学习技术,例如卷积神经网络(CNN)是ROI分割的最新解决方案,但在培训过程中需要大量注释的数据。但是,从LITT等新兴治疗中收集大型数据集是不切实际的。在本文中,我们提出了一个进行性脑部病变合成框架(PAVAE),以扩大训练数据集的数量和多样性。具体而言,我们的框架由两个顺序网络组成:掩模合成网络和掩模引导的病变合成网络。为了更好地利用外部信息来在网络培训期间提供额外的监督,我们设计了条件嵌入块(CEB)和掩模嵌入块(MEB),以将掩模的固有条件编码到功能空间中。最后,使用原始和合成病变图像对分割网络进行训练,以评估所提出的框架的有效性。实验结果表明,我们的方法可以实现逼真的合成结果,并在传统数据增强技术之上提高下游分割任务的性能。
translated by 谷歌翻译
了解脑损伤的强度特征是定义神经系统研究和预测疾病负担和结局的基于图像的生物标志物的关键。在这项工作中,我们提出了一种基于前景的新型生成方法,用于对局部病变特征进行建模,该方法既可以在健康图像上产生合成病变,又可以从病理图像中综合受试者特异性的伪健康图像。此外,该方法可以用作数据增强模块,以生成用于训练大脑图像分割网络的合成图像。在磁共振成像(MRI)上获得的多发性硬化症(MS)脑图像的实验表明,所提出的方法可以生成高度逼真的伪健康和伪病理学脑图像。与传统的数据增强方法以及最近的病变感知数据增强技术Carvemix相比,使用合成图像进行数据扩展可改善大脑图像分割的性能。该代码将在https://github.com/dogabasaran/lesion-synthesis中发布。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
胸部X射线(CXR)图像中的肺结节检测是肺癌的早期筛查。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增加数据增强而提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新颖的肺结综合框架,该框架分别将结节属性分为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状掩模来建模结节形状。然后,以下大小调制可以对像素级粒度中生成的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成结节CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结构合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
对疾病的诊断或图像分割医学图像训练计算机视觉相关算法是缺乏训练数据,标记的样品,和隐私问题的困难所致。出于这个原因,一个强大的生成方法来创建合成数据后高度寻求。然而,大多数三维图像生成器需要额外的图像输入或者是非常占用大量内存。为了解决这些问题,我们建议调整视频生成技术3-d图像生成。使用时间GAN(TGAN)架构,我们将展示我们能够产生逼真的头部和颈部PET图像。我们还表明,通过调节肿瘤口罩发电机,我们能够控制肿瘤的几何形状和位置,在生成的图像。为了测试合成影像的用途,我们使用合成的图像训练分割模型。空调真实肿瘤掩模合成图像被自动分割,和对应的真实图像也分割。我们评估使用的骰子得分的分割,并找到两个数据集(0.65合成数据,0.70的真实数据)同样的分割算法执行。然后,各种radionomic特征在分割的肿瘤体积为每个数据集来计算。真实的和合成的特征分布的比较显示,8七个特征分布有统计学不显着差异(p> 0.05)。还计算所有radionomic特征之间的相关系数,它是示出了所有在真实数据组中的强统计相关的在合成数据集被保留。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
组织病理学图像合成的现有深网无法为聚类核生成准确的边界,并且无法输出与不同器官一致的图像样式。为了解决这些问题,我们提出了一种样式引导的实例自适应标准化(SIAN),以合成不同器官的逼真的颜色分布和纹理。 Sian包含四个阶段:语义,风格化,实例化和调制。这四个阶段共同起作用,并集成到生成网络中,以嵌入图像语义,样式和实例级级边界。实验结果证明了所有组件在Sian中的有效性,并表明所提出的方法比使用Frechet Inception Inception距离(FID),结构相似性指数(SSIM),检测质量胜过组织病理学图像合成的最新条件gan。 (DQ),分割质量(SQ)和圆锥体质量(PQ)。此外,通过合并使用Sian产生的合成图像,可以显着改善分割网络的性能。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
检测新的多发性硬化症(MS)病变是该疾病进化的重要标志。基于学习的方法的适用性可以有效地自动化此任务。然而,缺乏带有新型病变的注释纵向数据是训练健壮和概括模型的限制因素。在这项工作中,我们描述了一条基于学习的管道,该管道解决了检测和细分新MS病变的挑战性任务。首先,我们建议使用单个时间点对在分割任务进行训练的模型中使用转移学习。因此,我们从更轻松的任务中利用知识,并为此提供更多注释的数据集。其次,我们提出了一种数据综合策略,以使用单个时间点扫描生成新的纵向时间点。通过这种方式,我们将检测模型预算到大型合成注释数据集上。最后,我们使用旨在模拟MRI中数据多样性的数据实践技术。通过这样做,我们增加了可用的小注释纵向数据集的大小。我们的消融研究表明,每个贡献都会提高分割精度。使用拟议的管道,我们获得了MSSEG2 MICCAI挑战中新的MS病变的分割和检测的最佳分数。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体减弱的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的后续大脑FLAIR MRI为临床医生提供了有用的信息,以监测疾病进展。在这项研究中,我们提出了对生成对抗网络(GAN)的新颖修饰,以预测MS以固定时间间隔的MS预测未来病变特异性MRI。我们在鉴别器中使用受监督的引导注意力和扩张卷积,该歧视者支持对生成图像是否实现的明智预测,这是基于对病变区域的关注,这反过来又有可能帮助改善生成器以预测病变区域将来的考试更准确。我们将我们的方法与几个基线和一种最先进的CF-Sagan模型进行了比较[1]。总之,我们的结果表明,与其他总体性能相似的模型相比,所提出的方法可实现更高的准确性,并减少病变区域预测误差的标准偏差。
translated by 谷歌翻译