由于各种原因,研究人员可以使用尺寸$ M $的数据的草图,而不是大小$ n $的完整样本进行回归。本文考虑了回归误差没有恒定方差的情况,而HeteroSkedasticity通常需要鲁棒标准误差才能提供准确的推断。我们表明,使用随机投影草概述的数据的估计将表现为“好像”错误是同性恋。通过随机抽样进行估计不会具有此属性。结果之所以出现,是因为在随机投影的情况下,草的估计值可以表示为退化$ u $统计量,在某些条件下,这些统计数据与同性恋方差均不正常。我们验证条件不仅在协变量是外源时最小二乘消退的情况下所保持的,而且在协变量是内源性时,也会在仪器变量估计中估计。 The result implies that inference, including first-stage F tests for instrument relevance, can be simpler than the full sample case if the sketching scheme is appropriately chosen.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
统计推断中的主要范式取决于I.I.D.的结构。来自假设的无限人群的数据。尽管它取得了成功,但在复杂的数据结构下,即使在清楚无限人口所代表的内容的情况下,该框架在复杂的数据结构下仍然不灵活。在本文中,我们探讨了一个替代框架,在该框架中,推断只是对模型误差的不变性假设,例如交换性或符号对称性。作为解决这个不变推理问题的一般方法,我们提出了一个基于随机的过程。我们证明了该过程的渐近有效性的一般条件,并在许多数据结构中说明了,包括单向和双向布局中的群集误差。我们发现,通过残差随机化的不变推断具有三个吸引人的属性:(1)在弱且可解释的条件下是有效的,可以解决重型数据,有限聚类甚至一些高维设置的问题。 (2)它在有限样品中是可靠的,因为它不依赖经典渐近学所需的规律性条件。 (3)它以适应数据结构的统一方式解决了推断问题。另一方面,诸如OLS或Bootstrap之类的经典程序以I.I.D.为前提。结构,只要实际问题结构不同,就需要修改。经典框架中的这种不匹配导致了多种可靠的误差技术和自举变体,这些变体经常混淆应用研究。我们通过广泛的经验评估证实了这些发现。残留随机化对许多替代方案的表现有利,包括可靠的误差方法,自举变体和分层模型。
translated by 谷歌翻译
In nonparametric independence testing, we observe i.i.d.\ data $\{(X_i,Y_i)\}_{i=1}^n$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$ lie in any general spaces, and we wish to test the null that $X$ is independent of $Y$. Modern test statistics such as the kernel Hilbert-Schmidt Independence Criterion (HSIC) and Distance Covariance (dCov) have intractable null distributions due to the degeneracy of the underlying U-statistics. Thus, in practice, one often resorts to using permutation testing, which provides a nonasymptotic guarantee at the expense of recalculating the quadratic-time statistics (say) a few hundred times. This paper provides a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pronounced ``cross'' HSIC/dCov) so that they have a limiting Gaussian distribution under the null, and thus do not require permutations. This requires building on the newly developed theory of cross U-statistics by Kim and Ramdas (2020), and in particular developing several nontrivial extensions of the theory in Shekhar et al. (2022), which developed an analogous permutation-free kernel two-sample test. We show that our new tests, like the originals, are consistent against fixed alternatives, and minimax rate optimal against smooth local alternatives. Numerical simulations demonstrate that compared to the full dCov or HSIC, our variants have the same power up to a $\sqrt 2$ factor, giving practitioners a new option for large problems or data-analysis pipelines where computation, not sample size, could be the bottleneck.
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
基于内核的测试提供了一个简单而有效的框架,该框架使用繁殖内核希尔伯特空间的理论设计非参数测试程序。在本文中,我们提出了新的理论工具,可用于在几种数据方案以及许多不同的测试问题中研究基于内核测试的渐近行为。与当前的方法不同,我们的方法避免使用冗长的$ u $和$ v $统计信息扩展并限制定理,该定理通常出现在文献中,并直接与希尔伯特空格上的随机功能合作。因此,我们的框架会导致对内核测试的简单明了的分析,只需要轻度的规律条件。此外,我们表明,通常可以通过证明我们方法所需的规律条件既足够又需要进行必要的规律条件来改进我们的分析。为了说明我们的方法的有效性,我们为有条件的独立性测试问题提供了一项新的内核测试,以及针对已知的基于内核测试的新分析。
translated by 谷歌翻译
由于其出色的经验表现,随机森林是过去十年中使用的机器学习方法之一。然而,由于其黑框的性质,在许多大数据应用中很难解释随机森林的结果。量化各个特征在随机森林中的实用性可以大大增强其解释性。现有的研究表明,一些普遍使用的特征对随机森林的重要性措施遭受了偏见问题。此外,对于大多数现有方法,缺乏全面的规模和功率分析。在本文中,我们通过假设检验解决了问题,并提出了一个自由化特征 - 弥散性相关测试(事实)的框架,以评估具有偏见性属性的随机森林模型中给定特征的重要性,我们零假设涉及该特征是否与所有其他特征有条件地独立于响应。关于高维随机森林一致性的一些最新发展,对随机森林推断的这种努力得到了赋予的能力。在存在功能依赖性的情况下,我们的事实测试的香草版可能会遇到偏见问题。我们利用偏置校正的不平衡和调节技术。我们通过增强功率的功能转换将合奏的想法进一步纳入事实统计范围。在相当普遍的具有依赖特征的高维非参数模型设置下,我们正式确定事实可以提供理论上合理的随机森林具有P值,并通过非催化分析享受吸引人的力量。新建议的方法的理论结果和有限样本优势通过几个模拟示例和与Covid-19的经济预测应用进行了说明。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
加权最近的邻居(WNN)估计量通常用作平均回归估计的灵活且易于实现的非参数工具。袋装技术是一种优雅的方式,可以自动生成最近邻居的重量的WNN估计器;我们将最终的估计量命名为分布最近的邻居(DNN),以便于参考。然而,这种估计器缺乏分布结果,从而将其应用于统计推断。此外,当平均回归函数具有高阶平滑度时,DNN无法达到最佳的非参数收敛率,这主要是由于偏差问题。在这项工作中,我们对DNN提供了深入的技术分析,我们建议通过线性将两个DNN估计量与不同的子采样量表进行线性相结合,从而提出了DNN估计量的偏差方法,从而导致新型的两尺度DNN(TDNN(TDNN) )估计器。两尺度的DNN估计量具有等效的WNN表示,重量承认明确形式,有些则是负面的。我们证明,由于使用负权重,两尺度DNN估计器在四阶平滑度条件下估算回归函数时享有最佳的非参数收敛速率。我们进一步超出了估计,并确定DNN和两个规模的DNN均无渐进地正常,因为亚次采样量表和样本量差异到无穷大。对于实际实施,我们还使用二尺度DNN的Jacknife和Bootstrap技术提供方差估计器和分配估计器。可以利用这些估计器来构建有效的置信区间,以用于回归函数的非参数推断。建议的两尺度DNN方法的理论结果和吸引人的有限样本性能用几个数值示例说明了。
translated by 谷歌翻译
我们在具有固定设计的高维错误设置中分析主组件回归(PCR)。在适当的条件下,我们表明PCR始终以最小$ \ ell_2 $ -norm识别唯一模型,并且是最小的最佳模型。这些结果使我们能够建立非质子化的样本外预测,以确保提高最著名的速率。在我们的分析中,我们在样本外协变量之间引入了天然的线性代数条件,这使我们能够避免分布假设。我们的模拟说明了即使在协变量转移的情况下,这种条件对于概括的重要性。作为副产品,我们的结果还导致了合成控制文献的新结果,这是政策评估的主要方法。特别是,我们的minimax结果表明,在众多变体中,基于PCR的方法具有吸引力。据我们所知,我们对固定设计设置的预测保证在高维错误和合成控制文献中都是难以捉摸的。
translated by 谷歌翻译
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic under the null, and thus it has an intractable limiting distribution. Hence, to design a level-$\alpha$ test, one usually selects the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since every permutation takes quadratic time. We propose the cross-MMD, a new quadratic-time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, the cross-MMD has a limiting standard Gaussian distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
Consider the problem of matching two independent i.i.d. samples of size $N$ from two distributions $P$ and $Q$ in $\mathbb{R}^d$. For an arbitrary continuous cost function, the optimal assignment problem looks for the matching that minimizes the total cost. We consider instead in this paper the problem where each matching is endowed with a Gibbs probability weight proportional to the exponential of the negative total cost of that matching. Viewing each matching as a joint distribution with $N$ atoms, we then take a convex combination with respect to the above Gibbs probability measure. We show that this resulting random joint distribution converges, as $N\rightarrow \infty$, to the solution of a variational problem, introduced by F\"ollmer, called the Schr\"odinger problem. We also derive the first two error terms of orders $N^{-1/2}$ and $N^{-1}$, respectively. This gives us central limit theorems for integrated test functions, including for the cost of transport, and second order Gaussian chaos limits when the limiting Gaussian variance is zero. The proofs are based on a novel chaos decomposition of the discrete Schr\"odinger bridge by polynomial functions of the pair of empirical distributions as the first and second order Taylor approximations in the space of measures. This is achieved by extending the Hoeffding decomposition from the classical theory of U-statistics.
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
随机森林仍然是最受欢迎的现成监督学习算法之一。尽管他们记录了良好的经验成功,但直到最近,很少有很少的理论结果来描述他们的表现和行为。在这项工作中,我们通过建立随机森林和其他受监督学习集合的融合率来推动最近的一致性和渐近正常的工作。我们培养了广义U形统计的概念,并显示在此框架内,随机森林预测可能对比以前建立的较大的子样本尺寸可能保持渐近正常。我们还提供Berry-esseen的界限,以量化这种收敛的速度,使得分列大小的角色和确定随机森林预测分布的树木的角色。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译