许多最近的作品已经提出了培训具有本地鲁棒性属性的分类器的方法,这可以针对大多数投入证明可以消除逃离攻击的类别,但并非所有输入。由于数据分发Shift在安全应用程序中非常常见,因此通常观察到恶意软件检测,因此本地鲁棒性无法保证在部署分类器时的未经持续输入。因此,更希望强制实施所有输入的全局鲁棒性属性,这严格强于局部鲁棒性。在本文中,我们为满足全球鲁棒性属性的培训分类器提供了一种框架和工具。我们定义了全局稳健性的新概念,更适合安全分类器。我们设计一个新颖的助推器机构训练框架,以实施全球鲁棒性属性。我们将Classifier构建为逻辑规则的集合,并设计一个新的验证者来验证属性。在我们的训练算法中,助推器增加了分类器的容量,并且固定器在经次引导的电感合成后验证了验证的全局鲁棒性属性。我们表明我们可以培训分类器来满足三个安全数据集的不同全局鲁棒性属性,甚至同时多个属性,对分类器的性能进行适度影响。例如,我们训练Twitter垃圾邮件帐户分类器以满足五个全局鲁棒性属性,而真正的阳性率下降5.4%,而假阳性率的增加0.1%,而不是不满足任何财产的基线XGBoost模型。
translated by 谷歌翻译
随着深度神经网络(DNNS)的进步在许多关键应用中表现出前所未有的性能水平,它们的攻击脆弱性仍然是一个悬而未决的问题。我们考虑在测试时间进行逃避攻击,以防止在受约束的环境中进行深入学习,其中需要满足特征之间的依赖性。这些情况可能自然出现在表格数据中,也可能是特定应用程序域中功能工程的结果,例如网络安全中的威胁检测。我们提出了一个普通的基于迭代梯度的框架,称为围栏,用于制定逃避攻击,考虑到约束域和应用要求的细节。我们将其应用于针对两个网络安全应用培训的前馈神经网络:网络流量僵尸网络分类和恶意域分类,以生成可行的对抗性示例。我们广泛评估了攻击的成功率和绩效,比较它们对几个基线的改进,并分析影响攻击成功率的因素,包括优化目标和数据失衡。我们表明,通过最少的努力(例如,生成12个其他网络连接),攻击者可以将模型的预测从恶意类更改为良性并逃避分类器。我们表明,在具有更高失衡的数据集上训练的模型更容易受到我们的围栏攻击。最后,我们证明了在受限领域进行对抗训练的潜力,以提高针对这些逃避攻击的模型弹性。
translated by 谷歌翻译
在本文中,我们批评传统上用于评估在对抗环境中部署的机器学习模型的性能的鲁棒性措施。为了减轻稳健性的局限性,我们介绍了一种称为弹性的新措施,我们专注于其验证。特别地,我们讨论如何通过将传统的稳定性验证技术与数据无关的稳定性分析组合来验证弹性,这鉴定了模型不改变其预测的特征空间的子集。然后,我们为决策树和决策树集合介绍了一个正式的数据无关稳定性分析,我们在实验上评估公共数据集,我们利用恢复力验证。我们的结果表明,在实践中,恢复力验证是有用和可行的,产生了对标准和强大决策树模型的更可靠的安全评估。
translated by 谷歌翻译
深度神经网络(DNN)的巨大进步导致了各种任务的最先进的性能。然而,最近的研究表明,DNNS容易受到对抗的攻击,这在将这些模型部署到自动驾驶等安全关键型应用时,这使得非常关注。已经提出了不同的防御方法,包括:a)经验防御,通常可以在不提供稳健性认证的情况下再次再次攻击; b)可认真的稳健方法,由稳健性验证组成,提供了在某些条件下的任何攻击和相应的强大培训方法中的稳健准确性的下限。在本文中,我们系统化了可认真的稳健方法和相关的实用和理论意义和调查结果。我们还提供了在不同数据集上现有的稳健验证和培训方法的第一个全面基准。特别是,我们1)为稳健性验证和培训方法提供分类,以及总结代表性算法的方法,2)揭示这些方法中的特征,优势,局限性和基本联系,3)讨论当前的研究进展情况TNN和4的可信稳健方法的理论障碍,主要挑战和未来方向提供了一个开放的统一平台,以评估超过20种代表可认真的稳健方法,用于各种DNN。
translated by 谷歌翻译
机器学习容易受到对抗的示例 - 输入,旨在使模型表现不佳。但是,如果对逆势示例代表建模域中的现实输入,则尚不清楚。不同的域,如网络和网络钓鱼具有域制约束 - 在对手必须满足攻击方面必须满足要实现的攻击(除了任何对手特定的目标)之间的特征之间的复杂关系。在本文中,我们探讨了域限制如何限制对抗性能力以及对手如何适应创建现实(符合限制)示例的策略。在此,我们开发从数据学习域约束的技术,并展示如何将学习的约束集成到对抗性制作过程中。我们评估我们在网络入侵和网络钓鱼数据集中的方法的功效,并发现:(1)最多82%的对抗实例由最先进的制作算法产生的违规结构域约束,(2)域约束对对抗性鲁棒例子;强制约束产生模型精度的增加高达34%。我们不仅观察到对手必须改变投入以满足领域约束,但这些约束使得产生有效的对抗例子的产生远远挑战。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
在过去的十年中,神经网络(NNS)已被广泛用于许多应用程序,包括安全系统,例如自主系统。尽管采用了新兴的采用,但众所周知,NNS容易受到对抗攻击的影响。因此,提供确保此类系统正常工作的保证非常重要。为了解决这些问题,我们介绍了一个修复不安全NNS W.R.T.的框架。安全规范,即利用可满足的模型理论(SMT)求解器。我们的方法能够通过仅修改其重量值的一些重量值来搜索新的,安全的NN表示形式。此外,我们的技术试图最大程度地提高与原始网络在其决策边界方面的相似性。我们进行了广泛的实验,以证明我们提出的框架能够产生安全NNS W.R.T.的能力。对抗性的鲁棒性特性,只有轻度的准确性损失(就相似性而言)。此外,我们将我们的方法与天真的基线进行比较,以证明其有效性。总而言之,我们提供了一种算法以自动修复具有安全性的算法,并建议一些启发式方法以提高其计算性能。当前,通过遵循这种方法,我们能够产生由分段线性relu激活函数组成的小型(即具有多达数百个参数)的小型(即具有多达数百个参数)。然而,我们的框架是可以合成NNS W.R.T.的一般框架。一阶逻辑规范的任何可决定片段。
translated by 谷歌翻译
许多机器学习问题在表格域中使用数据。对抗性示例可能对这些应用尤其有害。然而,现有关于对抗鲁棒性的作品主要集中在图像和文本域中的机器学习模型。我们认为,由于表格数据和图像或文本之间的差异,现有的威胁模型不适合表格域。这些模型没有捕获该成本比不可识别更重要,也不能使对手可以将不同的价值归因于通过部署不同的对手示例获得的效用。我们表明,由于这些差异,用于图像的攻击和防御方法和文本无法直接应用于表格设置。我们通过提出新的成本和公用事业感知的威胁模型来解决这些问题,该模型量身定制了针对表格域的攻击者的攻击者的约束。我们介绍了一个框架,使我们能够设计攻击和防御机制,从而导致模型免受成本或公用事业意识的对手的影响,例如,受到一定美元预算约束的对手。我们表明,我们的方法在与对应于对抗性示例具有经济和社会影响的应用相对应的三个表格数据集中有效。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
尽管深度神经网络(DNN)最近取得了巨大进步,但它们通常容易受到对抗攻击的影响。已经做出了深入的研究工作,以改善DNN的鲁棒性;但是,大多数经验防御能力可以再次自适应攻击,理论上认证的鲁棒性受到限制,尤其是在大规模数据集上。这种脆弱性DNN的潜在根本原因是,尽管它们表现出了强大的表现力,但它们缺乏做出可靠和可靠预测的推理能力。在本文中,我们旨在集成领域知识,以使强大的学习与推理范式进行稳健的学习。特别是,我们通过推理管道(CARE)提出了一个认证的健壮学习,该学习由学习组成部分和推理组成部分组成。具体而言,我们使用一组标准DNN作为进行语义预测的学习组件,并利用概率图形模型(例如Markov Logic Networks(MLN))作为推理组件,以实现知识/逻辑推理。然而,众所周知,MLN(推理)的确切推断是#P-Complete,它限制了管道的可扩展性。为此,我们建议根据有效的期望最大化算法通过变异推断近似MLN推断。特别是,我们利用图形卷积网络(GCN)在变异推理过程中编码后分布,并更新MLN(M-step)中GCN(E-step)的参数(E-step)和知识规则的权重。我们在不同的数据集上进行了广泛的实验,并表明与最先进的基线相比,CARE的认证鲁棒性明显更高。我们还进行了不同的消融研究,以证明护理的经验鲁棒性和不同知识整合的有效性。
translated by 谷歌翻译
对基于机器学习的分类器以及防御机制的对抗攻击已在单一标签分类问题的背景下广泛研究。在本文中,我们将注意力转移到多标签分类,其中关于所考虑的类别中的关系的域知识可以提供自然的方法来发现不连贯的预测,即与培训数据之外的对抗的例子相关的预测分配。我们在框架中探讨这种直觉,其中一阶逻辑知识被转换为约束并注入半监督的学习问题。在此设置中,约束分类器学会满足边际分布的域知识,并且可以自然地拒绝具有不连贯预测的样本。尽管我们的方法在训练期间没有利用任何对攻击的知识,但我们的实验分析令人惊讶地推出了域名知识约束可以有效地帮助检测对抗性示例,特别是如果攻击者未知这样的约束。
translated by 谷歌翻译
神经网络已广泛应用于垃圾邮件和网络钓鱼检测,入侵预防和恶意软件检测等安全应用程序。但是,这种黑盒方法通常在应用中具有不确定性和不良的解释性。此外,神经网络本身通常容易受到对抗攻击的影响。由于这些原因,人们对可信赖和严格的方法有很高的需求来验证神经网络模型的鲁棒性。对抗性的鲁棒性在处理恶意操纵输入时涉及神经网络的可靠性,是安全和机器学习中最热门的主题之一。在这项工作中,我们在神经网络的对抗性鲁棒性验证中调查了现有文献,并在机器学习,安全和软件工程领域收集了39项多元化研究工作。我们系统地分析了它们的方法,包括如何制定鲁棒性,使用哪种验证技术以及每种技术的优势和局限性。我们从正式验证的角度提供分类学,以全面理解该主题。我们根据财产规范,减少问题和推理策略对现有技术进行分类。我们还展示了使用样本模型在现有研究中应用的代表性技术。最后,我们讨论了未来研究的开放问题。
translated by 谷歌翻译
联邦学习本质上很容易模拟中毒攻击,因为其分散性质允许攻击者参与受损的设备。在模型中毒攻击中,攻击者通过上传“中毒”更新来降低目标子任务(例如,作为鸟类的分类平面)模型的性能。在本报告中,我们介绍\ algoname {},这是一种使用全局Top-K更新稀疏和设备级渐变剪辑来减轻模型中毒攻击的新型防御。我们提出了一个理论框架,用于分析防御抗毒攻击的稳健性,并提供我们算法的鲁棒性和收敛性分析。为了验证其经验效率,我们在跨多个基准数据集中进行开放源评估,用于计算机愿景和联合学习。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
translated by 谷歌翻译
深度神经网络针对对抗性例子的脆弱性已成为将这些模型部署在敏感领域中的重要问题。事实证明,针对这种攻击的明确防御是具有挑战性的,依赖于检测对抗样本的方法只有在攻击者忽略检测机制时才有效。在本文中,我们提出了一种原则性的对抗示例检测方法,该方法可以承受规范受限的白色框攻击。受K类分类问题的启发,我们训练K二进制分类器,其中I-th二进制分类器用于区分I类的清洁数据和其他类的对抗性样本。在测试时,我们首先使用训练有素的分类器获取输入的预测标签(例如k),然后使用k-th二进制分类器来确定输入是否为干净的样本(k类)或对抗的扰动示例(其他类)。我们进一步设计了一种生成方法来通过将每个二进制分类器解释为类别条件数据的无标准密度模型来检测/分类对抗示例。我们提供上述对抗性示例检测/分类方法的全面评估,并证明其竞争性能和引人注目的特性。
translated by 谷歌翻译
神经网络在检测嘈杂数据中的模式方面非常成功,并且已成为许多领域的首选技术。但是,他们对对抗攻击的敏感性阻碍了它们的有用性。最近,已经提出了许多用于衡量和改善网络对对抗性扰动的鲁棒性的方法,并且这项不断增长的研究体现了许多明确或隐性的鲁棒性观念。这些概念之间的联系通常是微妙的,文献中缺少它们之间的系统比较。在本文中,我们开始解决这一差距,通过在网络的培训阶段,其验证和部署之后设置对网络鲁棒性作为数学属性的经验分析和评估的一般原则。然后,我们应用这些原则并进行案例研究,以展示我们一般方法的实际好处。
translated by 谷歌翻译
最近已经采取了密集的算法努力来实现复杂ML模型的认证鲁棒性快速改善。但是,当前的鲁棒性认证方法只能在有限的扰动半径下进行认证。鉴于现有的纯数据驱动的统计方法已经达到了瓶颈,因此我们建议将统计ML模型与知识(以逻辑规则表示为逻辑规则)作为使用Markov Logic Networks(MLN(MLN)(以进一步提高)的推理组件,以进一步改善总体认证的鲁棒性。这为证明这种范式的鲁棒性,尤其是推理组成部分(例如MLN)开辟了新的研究问题。作为理解这些问题的第一步,我们首先证明了证明MLN鲁棒性的计算复杂性是#p-hard。在这种硬度结果的指导下,我们通过仔细分析不同的模型制度来得出第一个用于MLN的认证鲁棒性。最后,我们对五个数据集进行了广泛的实验,包括高维图像和自然语言文本,以及自然语言文本,以及我们表明,具有基于知识的逻辑推理的经认证的鲁棒性确实胜过了T。心。
translated by 谷歌翻译