人类运动理解和预测是我们追求机器智能和人机交互系统的一体化方面。目前的方法通常追求运动学建模方法,严重依赖于先前的解剖知识和限制。然而,这种方法难以推广到不同的骨骼模型表示,并且在核对动态范围和运动复杂性的情况下也倾向于不足,从而阻碍了预测的准确性。在这项工作中,我们提出了一种基于随机微分方程和路径积分建模运动预测问题的新方法。每个骨骼接头的运动轮廓配制为基本随机变量,并用Langevin方程建模。我们制定采用GANS模拟路径积分的策略,这些路径集成量可优化未来的未来路径。我们在两个大型基准数据集,人3.6M和CMU Mocap进行实验。它强调,我们的方法平均地实现了当前最先进的方法的12.48%的准确性改进。
translated by 谷歌翻译
运动预测是计算机视觉中的经典问题,其旨在预测观察到的姿势序列的未来运动。已经提出了各种深度学习模型,在运动预测上实现了最先进的性能。然而,现有方法通常专注于在姿势空间中建模时间动态。不幸的是,人类运动的复杂和高度的性质带来了动态背景捕获的固有挑战。因此,我们远离传统的基于姿势的表示,并提出采用各个关节的相空间轨迹表示的新方法。此外,目前的方法倾向于仅考虑物理连接的关节之间的依赖性。在本文中,我们介绍了一种小说卷积神经模型,以有效利用明确的运动解剖学知识,并同时捕获关节轨迹动态的空间和时间信息。然后,我们提出了一个全局优化模块,了解各个联合功能之间的隐式关系。经验上,我们的方法在大规模3D人体运动基准数据集(即,Human3.6m,CMU Mocap)上进行评估。这些结果表明,我们的方法在基准数据集中设置了新的最先进状态。我们的代码将在https://github.com/post-group/teid中提供。
translated by 谷歌翻译
预测历史姿势序列的人类运动对于机器具有成功与人类智能相互作用的关键。到目前为止已经避免的一个方面是,我们代表骨骼姿势的事实是对预测结果的关键影响。然而,没有努力调查不同的姿势代表方案。我们对各种姿势表示进行了深入研究,重点关注它们对运动预测任务的影响。此外,最近的方法在现成的RNN单位上构建,用于运动预测。这些方法在捕获长期依赖性方面,顺序地并固有地具有困难。在本文中,我们提出了一种新颖的RNN架构,用于运动预测的AHMR(殷勤分层运动复发网络),其同时模拟局部运动上下文和全局上下文。我们进一步探索了运动预测任务的测地损失和前向运动学损失,其具有比广泛采用的L2损耗更多的几何意义。有趣的是,我们将我们的方法应用于一系列铰接物对象,包括人类,鱼类和鼠标。经验结果表明,我们的方法在短期预测中占据了最先进的方法,实现了大量增强的长期预测熟练程度,例如在50秒的预测中保留自然人样的运动。我们的代码已发布。
translated by 谷歌翻译
Stochastic human motion prediction aims to forecast multiple plausible future motions given a single pose sequence from the past. Most previous works focus on designing elaborate losses to improve the accuracy, while the diversity is typically characterized by randomly sampling a set of latent variables from the latent prior, which is then decoded into possible motions. This joint training of sampling and decoding, however, suffers from posterior collapse as the learned latent variables tend to be ignored by a strong decoder, leading to limited diversity. Alternatively, inspired by the diffusion process in nonequilibrium thermodynamics, we propose MotionDiff, a diffusion probabilistic model to treat the kinematics of human joints as heated particles, which will diffuse from original states to a noise distribution. This process offers a natural way to obtain the "whitened" latents without any trainable parameters, and human motion prediction can be regarded as the reverse diffusion process that converts the noise distribution into realistic future motions conditioned on the observed sequence. Specifically, MotionDiff consists of two parts: a spatial-temporal transformer-based diffusion network to generate diverse yet plausible motions, and a graph convolutional network to further refine the outputs. Experimental results on two datasets demonstrate that our model yields the competitive performance in terms of both accuracy and diversity.
translated by 谷歌翻译
本文认为共同解决估计3D人体的高度相关任务,并从RGB图像序列预测未来的3D运动。基于Lie代数姿势表示,提出了一种新的自投影机制,自然保留了人类运动运动学。通过基于编码器 - 解码器拓扑的序列到序列的多任务架构进一步促进了这一点,这使我们能够利用两个任务共享的公共场所。最后,提出了一个全球细化模块来提高框架的性能。我们的方法称为PoMomemet的效力是通过消融测试和人文3.6M和Humaneva-I基准的实证评估,从而获得与最先进的竞争性能。
translated by 谷歌翻译
人类运动预测是许多计算机视觉应用领域中的重要且挑战性的任务。最近的工作专注于利用经常性神经网络(RNN)的定时处理能力,实现短期预测的光滑且可靠的结果。但是,正如以前的工作所证明的那样,RNNS遭受错误累积,导致结果不可靠。在本文中,我们提出了一种简单的前馈深神经网络,用于运动预测,这考虑了人体关节之间的时间平滑度和空间依赖性。我们设计了一个多尺度的时空图卷积网络(GCNS),以隐式地建立人类运动过程中的时空依赖,其中在训练期间动态融合的不同尺度。整个模型适用于所有操作,然后遵循编码器解码器的框架。编码器由时间GCN组成,用于捕获帧和半自主学习空间GCN之间的运动特征,以提取关节轨迹之间的空间结构。解码器使用时间卷积网络(TCN)来维持其广泛的能力。广泛的实验表明,我们的方法优于人类3.6M和CMU Mocap的数据集上的SOTA方法,同时只需要更大的参数。代码将在https://github.com/yzg9353/dmsgcn上获得。
translated by 谷歌翻译
本文解决了人类运动预测的问题,包括预测未来的身体从历史上观察到的序列构成的构成。尽管其性能,但当前的最新方法依赖于任意复杂性的深度学习体系结构,例如经常性神经网络〜(RNN),变压器或图形卷积网络〜(GCN),通常需要多个培训阶段,等等。超过300万参数。在本文中,我们表明,这些方法的性能可以通过轻巧且纯粹的MLP体系结构超越,并且与几种标准实践(例如用离散的余弦变换代表身体姿势(DCT))相结合时,只有0.14亿个参数,预测关节的残留位移和优化速度作为辅助损失。对人类360万的详尽评估,Amass和3DPW数据集表明,我们的方法(我们将其配置为Simlpe)始终优于所有其他方法。我们希望我们的简单方法可以为社区提供强大的基准,并允许重新考虑人类运动预测的问题,以及当前的基准是否确实需要复杂的建筑设计。我们的代码可在\ url {https://github.com/dulucas/simlpe}上获得。
translated by 谷歌翻译
在计算机视觉中起关键作用的人类运动预测通常需要过去的运动序列作为输入。但是,在实际应用中,完整而正确的过去运动顺序可能太贵了。在本文中,我们提出了一种新的方法,可以从更弱的条件(即单个图像)中预测未来的人类运动,并具有混合密度网络(MDN)建模。与大多数现有的深层人类运动预测方法相反,MDN的多模式性质可以产生各种未来的运动假设,这很好地补偿了由单个输入和人类运动不确定性汇总的强烈随机歧义。在设计损失函数时,我们进一步引入了基于能量的公式,以灵活地对MDN的可学习参数施加先前的损失,以保持运动相干性,并通过自定义能量功能来提高预测准确性。我们训练有素的模型将图像直接作为输入,并生成满足给定条件的多个合理动作。在两个标准基准数据集上进行的广泛实验证明了我们方法在预测多样性和准确性方面的有效性。
translated by 谷歌翻译
根据历史运动序列预测未来的运动是计算机视觉中的一个基本问题,并且在自主驾驶和机器人技术中具有广泛的应用。最近的一些作品表明,图形卷积网络(GCN)有助于对不同关节之间的关系进行建模。但是,考虑到人类运动数据中的变体和各种作用类型,由于解耦的建模策略,很难描绘时空关系的交叉依赖性,这也可能加剧了不足的概括问题。因此,我们提出时空门控速度ADJACENCY GCN(GAGCN)学习对各种作用类型的复杂时空依赖性。具体而言,我们采用门控网络来通过混合候选时空邻接矩阵获得的可训练的自适应邻接矩阵来增强GCN的概括。此外,GAGCN通过平衡时空建模的重量并融合了脱钩时空特征来解决空间和时间的交叉依赖性。对人类360万,积聚和3DPW的广泛实验表明,GAGCN在短期和长期预测中都能达到最先进的表现。
translated by 谷歌翻译
最近在随机运动预测中的进展,即预测单一过去的姿势序列的多个可能的未来人类动作,导致产生真正不同的未来动作,甚至可以控制一些身体部位的运动。然而,为了实现这一点,最先进的方法需要学习用于多样性的多个映射和用于可控运动预测的专用模型。在本文中,我们向统一的深度生成网络介绍了多种和可控的运动预测。为此,我们利用了现实人类动作的直觉由有效姿势的平滑序列组成,并且给定的有限数据,学习姿势比动作更具易行。因此,我们设计了一种发电机,其顺序地预测不同车身部件的运动,并引入基于流动的基于流动的姿势,以及接合角度损失,以实现运动现实主义。在两个标准基准数据集,人类3.6m和人文集上进行实验。我展示了我们的方法在样本多样性和准确性方面优于最先进的基线。该代码可在https://github.com/wei-mao-2019/gsps获得
translated by 谷歌翻译
先前关于人类运动预测的工作遵循观察到的序列与要预测的序列之间建立映射关系的模式。但是,由于多元时间序列数据的固有复杂性,找到运动序列之间的外推关系仍然是一个挑战。在本文中,我们提出了一种新的预测模式,该模式介绍了以前被忽视的人类姿势,以从插值的角度实施预测任务。这些姿势在预测序列后存在,并形成特权序列。要具体而言,我们首先提出了一个插值学习网络(ITP-NETWORK),该网络既编码观察到的序列和特权序列,以插入预测的序列之间,其中嵌入式的特权序列 - 编码器(Priv-incoder)学习了这些序列特权知识(PK)同时。然后,我们提出了一个最终的预测网络(FP-NETWORK),该网络无法观察到特权序列,但配备了一种新型的PK模拟器,该序列可以提取从先前的网络中学到的PK。该模拟器作为输入观察到的序列,但近似私有编码器的行为,从而使fp-network模仿插值过程。广泛的实验结果表明,在短期和长期预测中,我们的预测模式在基准的H.36M,CMU-MOCAP和3DPW数据集上实现了最先进的性能。
translated by 谷歌翻译
合理和可控3D人类运动动画的创建是一个长期存在的问题,需要对技术人员艺术家进行手动干预。目前的机器学习方法可以半自动化该过程,然而,它们以显着的方式受到限制:它们只能处理预期运动的单个轨迹,该轨迹排除了对输出的细粒度控制。为了缓解该问题,我们在多个轨迹表示为具有缺失关节的姿势的空间和时间内将未来姿态预测的问题重构为姿势完成。我们表明这种框架可以推广到设计用于未来姿态预测的其他神经网络。曾经在该框架中培训,模型能够从任何数量的轨迹预测序列。我们提出了一种新颖的变形金刚架构,Trajevae,在这个想法上建立了一个,为3D人类动画提供了一个多功能框架。我们展示了Trajevae提供比基于轨迹的参考方法和方法基于过去的姿势。我们还表明,即使仅提供初始姿势,它也可以预测合理的未来姿势。
translated by 谷歌翻译
Human motion modelling is a classical problem at the intersection of graphics and computer vision, with applications spanning human-computer interaction, motion synthesis, and motion prediction for virtual and augmented reality. Following the success of deep learning methods in several computer vision tasks, recent work has focused on using deep recurrent neural networks (RNNs) to model human motion, with the goal of learning time-dependent representations that perform tasks such as short-term motion prediction and long-term human motion synthesis. We examine recent work, with a focus on the evaluation methodologies commonly used in the literature, and show that, surprisingly, state-of-the-art performance can be achieved by a simple baseline that does not attempt to model motion at all. We investigate this result, and analyze recent RNN methods by looking at the architectures, loss functions, and training procedures used in state-of-the-art approaches. We propose three changes to the standard RNN models typically used for human motion, which result in a simple and scalable RNN architecture that obtains state-of-the-art performance on human motion prediction.
translated by 谷歌翻译
在这项工作中,我们提出了MotionMixer,这是一个有效的3D人体姿势预测模型,仅基于多层感知器(MLP)。MotionMixer通过顺序混合这两种方式来学习时空3D身体姿势依赖性。给定3D身体姿势的堆叠序列,空间MLP提取物是身体关节的细粒空间依赖性。然后,随着时间的推移,身体关节的相互作用由时间MLP建模。最终将时空混合特征汇总并解码以获得未来的运动。为了校准姿势序列中每个时间步的影响,我们利用挤压和兴奋(SE)块。我们使用标准评估协议评估了36M,Amass和3DPW数据集的方法。对于所有评估,我们展示了最先进的性能,同时具有具有较少参数的模型。我们的代码可在以下网址找到:https://github.com/motionmlp/motionmixer
translated by 谷歌翻译
长期人体运动预测对于安全关键应用是必不可少的,例如人机互动和自主驾驶。在本文中,我们展示了实现长期预测,预测每次瞬间的人类姿势是不必要的。相反,通过线性地插入键盘来预测几个小折叠和近似中间组更有效。我们将证明我们的方法使我们能够在未来预测最多5秒的现实运动,远远大于文献中遇到的典型1秒。此外,由于我们模拟了未来的重叠概率,因此我们可以通过在推理时间采样来产生多种合理的未来动作。在这个延长的时间内,我们的预测更加现实,更多样化,更好地保护运动动力学而不是那些最先进的方法产量。
translated by 谷歌翻译
基于图形卷积网络的方法对车身连接关系进行建模,最近在基于3D骨架的人体运动预测中显示出巨大的希望。但是,这些方法有两个关键问题:首先,仅在有限的图形频谱中过滤特征,在整个频段中丢失了足够的信息;其次,使用单个图对整个身体进行建模,低估了各个身体部门的各种模式。为了解决第一个问题,我们提出了自适应图散射,该散射利用了多个可训练的带通滤波器将姿势特征分解为较丰富的图形频谱频段。为了解决第二个问题,分别对身体零件进行建模以学习多种动力学,从而沿空间维度提取更精细的特征提取。整合了上述两种设计,我们提出了一个新型的骨架派对图散射网络(SPGSN)。该模型的核心是级联的多部分图形散射块(MPGSB),在不同的身体部门建立自适应图散射,并基于推断的频谱重要性和身体零件相互作用融合分解的特征。广泛的实验表明,SPGSN的表现优于最先进的方法,其优于13.8%,9.3%和2.7%的SPGSN在每个联合位置误差(MPJPE)上,在36m,CMU MOCAP和3DPW Dataset,3D平均位置误差(MPJPE)方面,SPGSN优于最先进的方法。分别。
translated by 谷歌翻译
我们的目标是从规定的行动类别中解决从规定的行动类别创造多元化和自然人动作视频的有趣但具有挑战性的问题。关键问题在于能够在视觉外观中综合多种不同的运动序列。在本文中通过两步过程实现,该两步处理维持内部3D姿势和形状表示,Action2Motion和Motion2Video。 Action2Motion随机生成规定的动作类别的合理的3D姿势序列,该类别由Motion2Video进行处理和呈现,以形成2D视频。具体而言,Lie代数理论从事人类运动学的物理法之后代表自然人动作;开发了一种促进输出运动的分集的时间变化自动编码器(VAE)。此外,给定衣服人物的额外输入图像,提出了整个管道以提取他/她的3D详细形状,并在视频中呈现来自不同视图的合理运动。这是通过改进从单个2D图像中提取3D人类形状和纹理,索引,动画和渲染的现有方法来实现这一点,以形成人类运动的2D视频。它还需要3D人类运动数据集的策策和成果进行培训目的。彻底的经验实验,包括消融研究,定性和定量评估表现出我们的方法的适用性,并展示了解决相关任务的竞争力,其中我们的方法的组成部分与最先进的方式比较。
translated by 谷歌翻译
预测未来的人类运动在各种现实生活中的人机相互作用中起着重要作用。统一的制定和多阶建模是用于分析和代表人类运动的两个批判性观点。与事先作品相比,通过构建深度状态空间模型(Deepssm),我们提高人类运动系统的多阶建模能力,以实现更准确的预测。 DeepsSM利用状态空间理论和深网络的优点。具体地,我们通过状态空间理论将人体运动系统作为动态系统的状态空间模型和模型运动系统,为不同的人类运动系统提供统一的配方。此外,新颖的深度网络旨在参数化该系统,该系统共同模拟状态转换和状态观测转换过程。以这种方式,系统的状态由时变人运动序列的多阶信息更新。通过状态观察转换递归预测多个未来的姿势。为了进一步提高系统的模型能力,引入了一种新颖的损失,WT-MPJPE(每个关节位置误差的加权时间平均值),以优化模型。拟议的损失鼓励该系统通过增加重量来实现更准确的预测到早期时间步骤。两个基准数据集(即,Human3.6M和3DPW)的实验证实,我们的方法实现了最先进的性能,每个关节的精度至少为2.2mm。代码将可用:\ url {https:/github.com/lily2lab/deepssm.git}。
translated by 谷歌翻译
在人类运动预测上的事后大多专注于预测单一受试者的未来动作与过去的姿势序列隔离。然而,在密切互动的人面前,这种策略未能考虑不同主题运动之间的依赖关系。在本文中,我们引入了运动预测框架,其明确原因是关于两个观察到的对象的相互作用。具体而言,我们通过引入一对对应的对准机制来实现这一目标,该机制模拟了两个受试者的运动历史中的相互依赖性。这使我们能够以更现实的方式保留长期运动动态,并且更加强大地预测不寻常和快节奏的运动,例如在舞蹈场景中发生的运动。为了评估这一点,因为没有现有的运动预测数据集描述了两个紧密互动的主体,我们介绍了Lindyhop600K舞蹈数据集。我们的结果证明我们的方法优于最先进的单人运动预测技术。
translated by 谷歌翻译
人类运动预测旨在预测未来的姿势给出了一系列过去的3D骷髅。虽然这个问题最近受到了不断的关注,但它主要是为单身人类而被隔离解决。在本文中,我们在处理执行合作任务时探讨了这个问题,我们寻求预测两个互动者的未来运动给出了他们过去骷髅的两个序列。我们提出了一种新颖的交叉互动注意力,用于利用两个人的历史信息,并学会预测两个姿势序列之间的交叉依赖性。由于没有培训此类交互式情况的数据集,我们收集了Expi(极端姿态互动),这是一个新的基于实验室的人交互数据集,其专业舞者的数据集执行了Lindy-Hop舞蹈动作,其中包含115个序列,其中3D身体带有30k帧的序列。和形状。我们在Expi上彻底评估了我们的交叉交互网络,并表明这两者都在短期和长期预测中,它一直以最优异的方式为单人运动预测的最先进的方法。
translated by 谷歌翻译