当代人工神经网络(ANN)是经过训练的端到端,共同学习功能和分类器以完成感兴趣的任务。尽管非常有效,但这种范式在组装带注释的特定任务数据集和培训大规模网络方面施加了巨大的成本。我们建议通过引入视觉生物标志物分类的辅助预任务来将特征从下游肺超声任务中学习。我们证明,通过培训模型来预测生物标记标签,可以从超声视频中学习一个内容丰富,简洁和可解释的功能空间。值得注意的是,可以从弱视频尺度监督注释的数据中培训生物标志物功能提取器。这些功能可以由针对各种临床任务的各种下游专家模型(诊断,肺严重程度,S/F比)使用。至关重要的是,特定于任务的专家模型的准确性与直接训练此类目标任务的端到端模型相当,同时训练成本大大降低。
translated by 谷歌翻译
基于人工智能的肺超声成像分析已被证明是整个Covid-19大流行中快速诊断决策支持的有效技术。但是,这种技术可能需要几天或几周的训练过程和超参数调整,以开发智能的深度学习图像分析模型。这项工作的重点是利用“现成”预培训的模型,作为以最小的训练时间为疾病严重程度得分的深度提取器。我们建议在简单和紧凑的神经网络之前使用现有方法的预训练初始化,以减少对计算能力的依赖。在时间限制或资源约束的情况下,例如大流行的早期阶段,计算能力的降低至关重要。在由49位患者组成的数据集中,包括20,000多个图像,我们证明了现有方法作为特征提取器的使用会导致有效分类COVID-19与COVID相关的肺炎严重程度,同时只需几分钟的训练时间。与专家注释的地面真相相比,我们的方法可以在4级的严重程度评分量表上达到超过0.93的准确性,并提供可比的人均区域和全球分数。这些结果表明,在COVID-19患者的临床实践中以及其他呼吸道疾病中,在临床实践中以及在其他呼吸道疾病中的临床实践中快速部署和使用这种最小化适应方法的能力。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
Point-of-Care Ultrasound (POCUS) refers to clinician-performed and interpreted ultrasonography at the patient's bedside. Interpreting these images requires a high level of expertise, which may not be available during emergencies. In this paper, we support POCUS by developing classifiers that can aid medical professionals by diagnosing whether or not a patient has pneumothorax. We decomposed the task into multiple steps, using YOLOv4 to extract relevant regions of the video and a 3D sparse coding model to represent video features. Given the difficulty in acquiring positive training videos, we trained a small-data classifier with a maximum of 15 positive and 32 negative examples. To counteract this limitation, we leveraged subject matter expert (SME) knowledge to limit the hypothesis space, thus reducing the cost of data collection. We present results using two lung ultrasound datasets and demonstrate that our model is capable of achieving performance on par with SMEs in pneumothorax identification. We then developed an iOS application that runs our full system in less than 4 seconds on an iPad Pro, and less than 8 seconds on an iPhone 13 Pro, labeling key regions in the lung sonogram to provide interpretable diagnoses.
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
眼睛的临床诊断是对多种数据模式进行的,包括标量临床标签,矢量化生物标志物,二维底面图像和三维光学相干性层析成像(OCT)扫描。临床从业者使用所有可用的数据模式来诊断和治疗糖尿病性视网膜病(DR)或糖尿病黄斑水肿(DME)等眼部疾病。在眼科医学领域启用机器学习算法的使用需要研究治疗期内所有相关数据之间的关系和相互作用。现有的数据集受到限制,因为它们既不提供数据,也没有考虑数据模式之间的显式关系建模。在本文中,我们介绍了用于研究以上限制的视觉眼睛语义(橄榄)数据集的眼科标签。这是第一个OCT和近IIR眼底数据集,其中包括临床标签,生物标记标签,疾病标签和时间序列的患者治疗信息,来自相关临床试验。该数据集由1268个近红外图像组成,每个图像至少具有49个10月扫描和16个生物标志物,以及4个临床标签和DR或DME的疾病诊断。总共有96张眼睛的数据在至少两年的时间内平均,每只眼睛平均治疗66周和7次注射。我们在医学图像分析中为橄榄数据集进行了橄榄数据集的实用性,并为核心和新兴机器学习范式提供了基准和具体研究方向。
translated by 谷歌翻译
多代理行为建模旨在了解代理之间发生的交互。我们从行为神经科学,Caltech鼠标社交交互(CALMS21)数据集中提供了一个多代理数据集。我们的数据集由社交交互的轨迹数据组成,从标准居民入侵者测定中自由行为小鼠的视频记录。为了帮助加速行为研究,CALMS21数据集提供基准,以评估三种设置中自动行为分类方法的性能:(1)用于培训由单个注释器的所有注释,(2)用于风格转移以进行学习互动在特定有限培训数据的新行为学习的行为定义和(3)的注释差异。 DataSet由600万个未标记的追踪姿势的交互小鼠组成,以及超过100万帧,具有跟踪的姿势和相应的帧级行为注释。我们的数据集的挑战是能够使用标记和未标记的跟踪数据准确地对行为进行分类,以及能够概括新设置。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
逆转录 - 聚合酶链反应(RT-PCR)目前是Covid-19诊断中的金标准。然而,它可以花几天来提供诊断,假负率相对较高。成像,特别是胸部计算断层扫描(CT),可以有助于诊断和评估这种疾病。然而,表明标准剂量CT扫描对患者提供了显着的辐射负担,尤其是需要多次扫描的患者。在这项研究中,我们考虑低剂量和超低剂量(LDCT和ULDCT)扫描方案,其减少靠近单个X射线的辐射曝光,同时保持可接受的分辨率以进行诊断目的。由于胸部放射学专业知识可能不会在大流行期间广泛使用,我们使用LDCT / ULDCT扫描的收集的数据集进行人工智能(AI)基础的框架,以研究AI模型可以提供人为级性能的假设。 AI模型使用了两个阶段胶囊网络架构,可以快速对Covid-19,社区获得的肺炎(帽)和正常情况进行分类,使用LDCT / ULDCT扫描。 AI模型实现Covid-19敏感性为89.5%+ - 0.11,帽敏感性为95%+ \ - 0.11,正常情况敏感性(特异性)85.7%+ - 0.16,精度为90%+ \ - 0.06。通过纳入临床数据(人口统计和症状),性能进一步改善了Covid-19敏感性为94.3%+ \ - PM 0.05,帽敏感性为96.7%+ \ - 0.07,正常情况敏感性(特异性)91%+ - 0.09,精度为94.1%+ \ - 0.03。所提出的AI模型基于降低辐射暴露的LDCT / ULDCT扫描来实现人级诊断。我们认为,所提出的AI模型有可能协助放射科医师准确,并迅速诊断Covid-19感染,并帮助控制大流行期间的传输链。
translated by 谷歌翻译
由于COVID强烈影响呼吸系统,因此肺CT扫描可用于分析患者健康。我们引入了一个神经网络,用于预测肺损伤的严重程度和使用三维CT扫描检测感染。因此,我们将最新的Convnext模型调整为处理三维数据。此外,我们引入了专门调整的不同训练方法,以提高模型处理三维CT-DATA的能力。为了测试模型的性能,我们参加了第二COV19D严重性预测和感染检测的竞争。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
目的:为全身CT设计多疾病分类扫描使用自动提取标签从放射科文reports.Materials和方法三个不同的器官系统:这项回顾性研究共有12,092例患者(平均年龄57 + - 18; 6172名妇女)包括对模型开发和测试(2012-2017自)。基于规则的算法被用来从12,092患者提取13667身体CT扫描19,225疾病的标签。使用三维DenseVNet,三个器官系统是分段的:肺和胸膜;肝胆;和肾脏及输尿管。对于每个器官,三维卷积神经网络分类没有明显的疾病与四种常见疾病为跨越所有三个模型总共15个不同的标签。测试是在相对于2875个手动导出的参考标签2158个CT体积的子集从2133名患者( - ; 1079名妇女18,平均年龄58 +)进行。性能报告为曲线(AUC)与通过方法德朗95%置信区间下接收器的操作特性的区域。结果:提取的标签说明书验证确认91%横跨15个不同的唱片公司99%的准确率。对于肺和胸膜标签的AUC分别为:肺不张0.77(95%CI:0.74,0.81),结节0.65(0.61,0.69),肺气肿0.89(0.86,0.92),积液0.97(0.96,0.98),并且没有明显的疾病0.89( 0.87,0.91)。对于肝和胆囊的AUC分别为:肝胆钙化0.62(95%CI:0.56,0.67),病变0.73(0.69,0.77),扩张0.87(0.84,0.90),脂肪0.89(0.86,0.92),并且没有明显的疾病0.82( 0.78,0.85)。对于肾脏及输尿管的AUC分别为:石0.83(95%CI:0.79,0.87),萎缩0.92(0.89,0.94),病变0.68(0.64,0.72),囊肿0.70(0.66,0.73),并且没有明显的疾病0.79(0.75 ,0.83)。结论:弱监督深度学习模型能够在多器官系统不同的疾病分类。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
Covid-19大流行为感染检测和监测解决方案产生了重大的兴趣和需求。在本文中,我们提出了一种机器学习方法,可以使用在消费者设备上进行的录音来快速分离Covid-19。该方法将信号处理方法与微调深层学习网络相结合,提供了信号去噪,咳嗽检测和分类的方法。我们还开发并部署了一个移动应用程序,使用症状检查器与语音,呼吸和咳嗽信号一起使用,以检测Covid-19感染。该应用程序对两个开放的数据集和最终用户在测试版测试期间收集的嘈杂数据显示了鲁棒性能。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
病理诊所中癌症的诊断,预后和治疗性决策现在可以基于对多吉吉像素组织图像的分析,也称为全斜图像(WSIS)。最近,已经提出了深层卷积神经网络(CNN)来得出无监督的WSI表示。这些很有吸引力,因为它们不太依赖于繁琐的专家注释。但是,一个主要的权衡是,较高的预测能力通常以解释性为代价,这对他们的临床使用构成了挑战,通常通常期望决策中的透明度。为了应对这一挑战,我们提出了一个基于Deep CNN的手工制作的框架,用于构建整体WSI级表示。基于有关变压器在自然语言处理领域的内部工作的最新发现,我们将其过程分解为一个更透明的框架,我们称其为手工制作的组织学变压器或H2T。基于我们涉及各种数据集的实验,包括总共5,306个WSI,结果表明,与最近的最新方法相比,基于H2T的整体WSI级表示具有竞争性能,并且可以轻松用于各种下游分析任务。最后,我们的结果表明,H2T框架的最大14倍,比变压器模型快14倍。
translated by 谷歌翻译
组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译