由于类间的相似性和注释歧义,嘈杂的标签面部表达识别(FER)比传统的嘈杂标签分类任务更具挑战性。最近的作品主要通过过滤大量损坏样本来解决此问题。在本文中,我们从新功能学习的角度探索了嘈杂的标签。我们发现,FER模型通过专注于可以认为与嘈杂标签相关的一部分来记住嘈杂的样本,而不是从导致潜在真理的整个功能中学习。受到的启发,我们提出了一种新颖的擦除注意力一致性(EAC)方法,以自动抑制嘈杂的样品。具体而言,我们首先利用面部图像的翻转语义一致性来设计不平衡的框架。然后,我们随机删除输入图像,并使用翻转注意一致性,以防止模型专注于部分特征。 EAC明显优于最先进的嘈杂标签方法,并将其概括地概括为其他类似CIFAR100和Tiny-Imagenet等类别的任务。该代码可在https://github.com/zyh-uaiaaaa/erasing-prestention-consistency中获得。
translated by 谷歌翻译
Learning with noisy labels is a vital topic for practical deep learning as models should be robust to noisy open-world datasets in the wild. The state-of-the-art noisy label learning approach JoCoR fails when faced with a large ratio of noisy labels. Moreover, selecting small-loss samples can also cause error accumulation as once the noisy samples are mistakenly selected as small-loss samples, they are more likely to be selected again. In this paper, we try to deal with error accumulation in noisy label learning from both model and data perspectives. We introduce mean point ensemble to utilize a more robust loss function and more information from unselected samples to reduce error accumulation from the model perspective. Furthermore, as the flip images have the same semantic meaning as the original images, we select small-loss samples according to the loss values of flip images instead of the original ones to reduce error accumulation from the data perspective. Extensive experiments on CIFAR-10, CIFAR-100, and large-scale Clothing1M show that our method outperforms state-of-the-art noisy label learning methods with different levels of label noise. Our method can also be seamlessly combined with other noisy label learning methods to further improve their performance and generalize well to other tasks. The code is available in https://github.com/zyh-uaiaaaa/MDA-noisy-label-learning.
translated by 谷歌翻译
现实世界的面部表达识别(FER)数据集遭受吵闹的注释,由于众包,表达式的歧义,注释者的主观性和类间的相似性。但是,最近的深层网络具有强大的能力,可以记住嘈杂的注释导致腐蚀功能嵌入和泛化不良的能力。为了处理嘈杂的注释,我们提出了一个动态FER学习框架(DNFER),其中根据训练过程中的动态类特定阈值选择了干净的样品。具体而言,DNFER基于使用选定的干净样品和使用所有样品的无监督培训的监督培训。在训练过程中,每个微型批次的平均后类概率被用作动态类特异性阈值,以选择干净的样品进行监督训练。该阈值与噪声率无关,与其他方法不同,不需要任何干净的数据。此外,要从所有样品中学习,使用无监督的一致性损失对齐弱调节图像和强大图像之间的后验分布。我们证明了DNFER在合成和实际噪声注释的FER数据集(如RaFDB,Ferplus,Sfew和altimpnet)上的鲁棒性。
translated by 谷歌翻译
Facial Expression Recognition (FER) in the wild is an extremely challenging task. Recently, some Vision Transformers (ViT) have been explored for FER, but most of them perform inferiorly compared to Convolutional Neural Networks (CNN). This is mainly because the new proposed modules are difficult to converge well from scratch due to lacking inductive bias and easy to focus on the occlusion and noisy areas. TransFER, a representative transformer-based method for FER, alleviates this with multi-branch attention dropping but brings excessive computations. On the contrary, we present two attentive pooling (AP) modules to pool noisy features directly. The AP modules include Attentive Patch Pooling (APP) and Attentive Token Pooling (ATP). They aim to guide the model to emphasize the most discriminative features while reducing the impacts of less relevant features. The proposed APP is employed to select the most informative patches on CNN features, and ATP discards unimportant tokens in ViT. Being simple to implement and without learnable parameters, the APP and ATP intuitively reduce the computational cost while boosting the performance by ONLY pursuing the most discriminative features. Qualitative results demonstrate the motivations and effectiveness of our attentive poolings. Besides, quantitative results on six in-the-wild datasets outperform other state-of-the-art methods.
translated by 谷歌翻译
尽管在过去的几年中取得了重大进展,但歧义仍然是面部表情识别(FER)的关键挑战。它可能导致嘈杂和不一致的注释,这阻碍了现实世界中深度学习模型的性能。在本文中,我们提出了一种新的不确定性标签分布学习方法,以提高深层模型的鲁棒性,以防止不确定性和歧义。我们利用价值空间中的邻里信息来适应培训训练样本的情绪分布。我们还考虑提供的标签将其纳入标签分布时的不确定性。我们的方法可以轻松地集成到深层网络中,以获得更多的培训监督并提高识别准确性。在各种嘈杂和模棱两可的环境下,在几个数据集上进行了密集的实验表明,我们的方法取得了竞争成果,并且超出了最新的最新方法。我们的代码和模型可在https://github.com/minhnhatvt/label-distribution-learning-fer-tf上找到。
translated by 谷歌翻译
Deep models for facial expression recognition achieve high performance by training on large-scale labeled data. However, publicly available datasets contain uncertain facial expressions caused by ambiguous annotations or confusing emotions, which could severely decline the robustness. Previous studies usually follow the bias elimination method in general tasks without considering the uncertainty problem from the perspective of different corresponding sources. In this paper, we propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC. Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch. In addition, two auxiliary tasks, i.e., action unit detection and valence-arousal measurement, are introduced to learn semantic distributions from a data-driven AU graph and mitigate category imbalance based on latent dependencies between discrete and continuous emotions, respectively. Moreover, a re-labeling strategy guided by feature-level similarity constraint further generates new labels for identified uncertain samples to promote model learning. The proposed method can flexibly combine with existing frameworks in a fully-supervised or weakly-supervised manner. Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties and outperforms the state-of-the-art methods.
translated by 谷歌翻译
深神经网络(DNN)的记忆效果在许多最先进的标签噪声学习方法中起着枢轴作用。为了利用这一财产,通常采用早期停止训练早期优化的伎俩。目前的方法通常通过考虑整个DNN来决定早期停止点。然而,DNN可以被认为是一系列层的组成,并且发现DNN中的后一个层对标签噪声更敏感,而其前同行是非常稳健的。因此,选择整个网络的停止点可以使不同的DNN层对抗彼此影响,从而降低最终性能。在本文中,我们建议将DNN分离为不同的部位,逐步培训它们以解决这个问题。而不是早期停止,它一次列举一个整体DNN,我们最初通过用相对大量的时期优化DNN来训练前DNN层。在培训期间,我们通过使用较少数量的时期使用较少的地层来逐步培训后者DNN层,以抵消嘈杂标签的影响。我们将所提出的方法术语作为渐进式早期停止(PES)。尽管其简单性,与早期停止相比,PES可以帮助获得更有前景和稳定的结果。此外,通过将PE与现有的嘈杂标签培训相结合,我们在图像分类基准上实现了最先进的性能。
translated by 谷歌翻译
High-quality annotated images are significant to deep facial expression recognition (FER) methods. However, uncertain labels, mostly existing in large-scale public datasets, often mislead the training process. In this paper, we achieve uncertain label correction of facial expressions using auxiliary action unit (AU) graphs, called ULC-AG. Specifically, a weighted regularization module is introduced to highlight valid samples and suppress category imbalance in every batch. Based on the latent dependency between emotions and AUs, an auxiliary branch using graph convolutional layers is added to extract the semantic information from graph topologies. Finally, a re-labeling strategy corrects the ambiguous annotations by comparing their feature similarities with semantic templates. Experiments show that our ULC-AG achieves 89.31% and 61.57% accuracy on RAF-DB and AffectNet datasets, respectively, outperforming the baseline and state-of-the-art methods.
translated by 谷歌翻译
人类的情感认可是人工智能的积极研究领域,在过去几年中取得了实质性的进展。许多最近的作品主要关注面部区域以推断人类的情感,而周围的上下文信息没有有效地利用。在本文中,我们提出了一种新的深网络,有效地识别使用新的全球局部注意机制的人类情绪。我们的网络旨在独立地从两个面部和上下文区域提取特征,然后使用注意模块一起学习它们。以这种方式,面部和上下文信息都用于推断人类的情绪,从而增强分类器的歧视。密集实验表明,我们的方法超越了最近的最先进的方法,最近的情感数据集是公平的保证金。定性地,我们的全球局部注意力模块可以提取比以前的方法更有意义的注意图。我们网络的源代码和培训模型可在https://github.com/minhnhatvt/glamor-net上获得
translated by 谷歌翻译
经过嘈杂标签训练的深层模型很容易在概括中过度拟合和挣扎。大多数现有的解决方案都是基于理想的假设,即标签噪声是类条件,即同一类的实例共享相同的噪声模型,并且独立于特征。在实践中,现实世界中的噪声模式通常更为细粒度作为实例依赖性,这构成了巨大的挑战,尤其是在阶层间失衡的情况下。在本文中,我们提出了一种两阶段的干净样品识别方法,以应对上述挑战。首先,我们采用类级特征聚类程序,以早期识别在班级预测中心附近的干净样品。值得注意的是,我们根据稀有类的预测熵来解决类不平衡问题。其次,对于接近地面真相类边界的其余清洁样品(通常与样品与实例有关的噪声混合),我们提出了一种基于一致性的新型分类方法,该方法使用两个分类器头的一致性来识别它们:一致性越高,样品清洁的可能性就越大。对几个具有挑战性的基准进行了广泛的实验,证明了我们的方法与最先进的方法相比。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
自数据注释(尤其是对于大型数据集)以来,使用嘈杂的标签学习引起了很大的研究兴趣,这可能不可避免地不可避免。最近的方法通过将培训样本分为清洁和嘈杂的集合来求助于半监督的学习问题。然而,这种范式在重标签噪声下容易出现重大变性,因为干净样品的数量太小,无法进行常规方法。在本文中,我们介绍了一个新颖的框架,称为LC-Booster,以在极端噪音下明确处理学习。 LC-Booster的核心思想是将标签校正纳入样品选择中,以便可以通过可靠的标签校正来培训更纯化的样品,从而减轻确认偏差。实验表明,LC-Booster在几个嘈杂标签的基准测试中提高了最先进的结果,包括CIFAR-10,CIFAR-100,CLASTINGING 1M和WEBVISION。值得注意的是,在极端的90 \%噪声比下,LC-Booster在CIFAR-10和CIFAR-100上获得了92.9 \%和48.4 \%的精度,超过了最终方法,较大的边距就超过了最终方法。
translated by 谷歌翻译
不完美的标签在现实世界数据集中无处不在,严重损害了模型性能。几个最近处理嘈杂标签的有效方法有两个关键步骤:1)将样品分开通过培训丢失,2)使用半监控方法在错误标记的集合中生成样本的伪标签。然而,由于硬样品和噪声之间的类似损失分布,目前的方法总是损害信息性的硬样品。在本文中,我们提出了PGDF(先前引导的去噪框架),通过生成样本的先验知识来学习深层模型来抑制噪声的新框架,这被集成到分割样本步骤和半监督步骤中。我们的框架可以将更多信息性硬清洁样本保存到干净标记的集合中。此外,我们的框架还通过抑制当前伪标签生成方案中的噪声来促进半监控步骤期间伪标签的质量。为了进一步增强硬样品,我们在训练期间在干净的标记集合中重新重量样品。我们使用基于CiFar-10和CiFar-100的合成数据集以及现实世界数据集WebVision和服装1M进行了评估了我们的方法。结果表明了最先进的方法的大量改进。
translated by 谷歌翻译
Convolutional Neural Networks (CNNs) have demonstrated superiority in learning patterns, but are sensitive to label noises and may overfit noisy labels during training. The early stopping strategy averts updating CNNs during the early training phase and is widely employed in the presence of noisy labels. Motivated by biological findings that the amplitude spectrum (AS) and phase spectrum (PS) in the frequency domain play different roles in the animal's vision system, we observe that PS, which captures more semantic information, can increase the robustness of DNNs to label noise, more so than AS can. We thus propose early stops at different times for AS and PS by disentangling the features of some layer(s) into AS and PS using Discrete Fourier Transform (DFT) during training. Our proposed Phase-AmplituDe DisentangLed Early Stopping (PADDLES) method is shown to be effective on both synthetic and real-world label-noise datasets. PADDLES outperforms other early stopping methods and obtains state-of-the-art performance.
translated by 谷歌翻译
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from labeled and unlabeled samples independently, as a result, the features are not discriminative enough. In this work, we propose a novel Cross Attention Network to address the challenging problems in few-shot classification. Firstly, Cross Attention Module is introduced to deal with the problem of unseen classes. The module generates cross attention maps for each pair of class feature and query sample feature so as to highlight the target object regions, making the extracted feature more discriminative. Secondly, a transductive inference algorithm is proposed to alleviate the low-data problem, which iteratively utilizes the unlabeled query set to augment the support set, thereby making the class features more representative. Extensive experiments on two benchmarks show our method is a simple, effective and computationally efficient framework and outperforms the state-of-the-arts.
translated by 谷歌翻译
尽管对神经网络进行了监督学习的巨大进展,但在获得高质量,大规模和准确标记的数据集中存在重大挑战。在这种情况下,在本文中,我们在存在标签噪声的情况下解决分类问题,更具体地,既有闭合和开放式标签噪声,就是样本的真实标签或可能不属于时给定标签的集合。在我们的方法中,方法是一种样本选择机制,其依赖于样本的注释标签与其邻域中标签的分布之间的一致性;依赖于分类器跨后续迭代的置信机制的依赖标签机制;以及培训编码器的培训策略,同时通过单独的选择样本上的跨熵丢失和分类器编码器培训。没有钟声和口哨,如共同训练,以便减少自我确认偏差,并且对其少数超参数的环境具有鲁棒性,我们的方法显着超越了与人工噪声和真实的CIFAR10 / CIFAR100上的先前方法-world噪声数据集如webvision和动物-10n。
translated by 谷歌翻译
现实世界中的大规模医学图像分析(MIA)数据集面临三个挑战:1)它们包含影响训练收敛和概括的嘈杂标记的样本,2)它们通常每个类别的样本分布不平衡,3)通常包括一个多标签问题,其中样本可以进行多个诊断。当前的方法通常经过培训以解决这些问题的一部分,但是我们不知道可以同时解决这三个问题的方法。在本文中,我们提出了一个新的训练模块,称为非挥发性无偏内存(NVUM),该模型的非挥发性存储在嘈杂的多标签问题上的新正则损失的模型逻辑平均值。我们进一步公正了NVUM更新中的分类预测,以解决不平衡的学习问题。我们进行了广泛的实验,以评估本文提出的新基准测试的NVUM,在该基准上进行了训练,该训练是在嘈杂的多标签不平衡的胸部X射线(CXR)训练集上进行的,由Chest-XRay14和Chexpert组成,并且在测试上进行了测试。清洁多标签CXR数据集Openi和Padchest。我们的方法优于以前的最先进的CXR分类器和以前可以在所有评估上处理嘈杂标签的方法。我们的代码可在https://github.com/fbladl/nvum上找到。
translated by 谷歌翻译
Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvE.
translated by 谷歌翻译
我们提出了一个用于图像分类的端到端可训练的功能增强模块,该模块提取和利用多视图本地功能来增强模型性能。不同于使用全球平均池(GAP)仅从全局视图中提取矢量化特征,我们建议我们采样和集成多样的多视图本地特征,以提高模型鲁棒性。为了示例班级代表性的本地功能,我们合并了一个简单的辅助分类器头(仅包含1 $ \ times $ 1卷积层),通过我们建议的Adacam(适应性的Adacam)(适应性的Adacam)(适应性的ADACAM)有效地适应了特征图的类别歧视局部区域()。广泛的实验表明,我们的多视图功能增强模块获得了一致且明显的性能提高。
translated by 谷歌翻译
遥感(RS)图像的多标签分类(MLC)的准确方法的开发是RS中最重要的研究主题之一。基于深度卷积神经网络(CNNS)的方法显示了RS MLC问题的强劲性能。然而,基于CNN的方法通常需要多个陆地覆盖类标签注释的大量可靠的训练图像。收集这些数据是耗时和昂贵的。为了解决这个问题,可包括嘈杂标签的公开专题产品可用于向RS零标记成本注释RS图像。但是,多标签噪声(可能与错误且缺少标签注释相关)可以扭曲MLC算法的学习过程。标签噪声的检测和校正是具有挑战性的任务,尤其是在多标签场景中,其中每个图像可以与多于一个标签相关联。为了解决这个问题,我们提出了一种新的噪声稳健协作多标签学习(RCML)方法,以减轻CNN模型训练期间多标签噪声的不利影响。 RCML在基于三个主模块的RS图像中识别,排名和排除噪声多标签:1)差异模块; 2)组套索模块; 3)交换模块。差异模块确保两个网络了解不同的功能,同时产生相同的预测。组套索模块的任务是检测分配给多标记训练图像的潜在嘈杂的标签,而交换模块任务致力于在两个网络之间交换排名信息。与现有的方法不同,我们提出了关于噪声分布的假设,我们所提出的RCML不会在训练集中的噪声类型之前进行任何先前的假设。我们的代码在线公开提供:http://www.noisy-labels-in-rs.org
translated by 谷歌翻译