人类的情感认可是人工智能的积极研究领域,在过去几年中取得了实质性的进展。许多最近的作品主要关注面部区域以推断人类的情感,而周围的上下文信息没有有效地利用。在本文中,我们提出了一种新的深网络,有效地识别使用新的全球局部注意机制的人类情绪。我们的网络旨在独立地从两个面部和上下文区域提取特征,然后使用注意模块一起学习它们。以这种方式,面部和上下文信息都用于推断人类的情绪,从而增强分类器的歧视。密集实验表明,我们的方法超越了最近的最先进的方法,最近的情感数据集是公平的保证金。定性地,我们的全球局部注意力模块可以提取比以前的方法更有意义的注意图。我们网络的源代码和培训模型可在https://github.com/minhnhatvt/glamor-net上获得
translated by 谷歌翻译
通过面部和物理表达表达和识别情绪是社会互动的重要组成部分。情绪识别是计算机愿景的基本任务,由于其各种应用,主要用于允许人类和机器之间更加自然的相互作用。情感识别侧重于分析面部表情的常见方法,需要图像中面部的自动定位。虽然这些方法可以在受控场景中正确地分类情绪,但是在处理无约束的日常交互时,这种技术有限。我们提出了一种基于自适应多线索的情感认可的新深度学习方法,从而提取来自上下文和身体姿势的信息,人类通常用于社会互动和沟通。我们将所提出的方法与CAER-S数据集中的最先进方法进行比较,评估达到89.30%的管道中的不同组件
translated by 谷歌翻译
Understanding the facial expressions of our interlocutor is important to enrich the communication and to give it a depth that goes beyond the explicitly expressed. In fact, studying one's facial expression gives insight into their hidden emotion state. However, even as humans, and despite our empathy and familiarity with the human emotional experience, we are only able to guess what the other might be feeling. In the fields of artificial intelligence and computer vision, Facial Emotion Recognition (FER) is a topic that is still in full growth mostly with the advancement of deep learning approaches and the improvement of data collection. The main purpose of this paper is to compare the performance of three state-of-the-art networks, each having their own approach to improve on FER tasks, on three FER datasets. The first and second sections respectively describe the three datasets and the three studied network architectures designed for an FER task. The experimental protocol, the results and their interpretation are outlined in the remaining sections.
translated by 谷歌翻译
先前的工作表明,使用顺序学习者学习面部不同组成部分的顺序可以在面部表达识别系统的性能中发挥重要作用。我们提出了Facetoponet,这是面部表达识别的端到端深层模型,它能够学习面部有效的树拓扑。然后,我们的模型遍历学习的树以生成序列,然后将其用于形成嵌入以喂养顺序学习者。设计的模型采用一个流进行学习结构,并为学习纹理提供一个流。结构流着重于面部地标的位置,而纹理流的主要重点是在地标周围的斑块上学习纹理信息。然后,我们通过利用有效的基于注意力的融合策略来融合两个流的输出。我们对四个大型内部面部表达数据集进行了广泛的实验 - 即Alltionnet,FER2013,ExpW和RAF-DB,以及一个实验室控制的数据集(CK+)来评估我们的方法。 Facetoponet在五个数据集中的三个数据集中达到了最新的性能,并在其他两个数据集中获得了竞争结果。我们还执行严格的消融和灵敏度实验,以评估模型中不同组件和参数的影响。最后,我们执行鲁棒性实验,并证明与该地区其他领先方法相比,Facetoponet对阻塞更具稳健性。
translated by 谷歌翻译
面部情感识别是识别心理学用来诊断患者的重要工具之一。面部和面部情感识别是机器学习卓越的领域。由于不同的环境,例如照明条件,姿势变化,偏航运动和遮挡,面部情绪识别是对数字图像处理的开放挑战。深度学习方法已显示出图像识别的显着改善。但是,准确性和时间仍然需要改进。这项研究旨在在训练期间提高面部情绪识别的准确性,并使用Extreme Learning Machine(CNNeelm)增强的修改后的卷积神经网络减少处理时间。该系统需要(CNNeelm)提高培训期间图像注册的准确性。此外,该系统通过拟议的CNNeelm模型认识到六种面部情绪快乐,悲伤,厌恶,恐惧,惊喜和中立。研究表明,与经过改进的随机梯度下降(SGD)技术相比,总体面部情绪识别精度的提高了2%。借助Extreme Learning Machine(ELM)分类器,处理时间从113ms中降至65ms,可以从20fps的视频剪辑中平滑地对每个帧进行分类。使用预先训练的InceptionV3模型,建议使用JAFFE,CK+和FER2013表达数据集训练所提出的CNNeelm模型。仿真结果显示出准确性和处理时间的显着改善,使该模型适合视频分析过程。此外,该研究解决了处理面部图像所需的大量处理时间的问题。
translated by 谷歌翻译
自动情绪识别(ER)最近由于其在许多实际应用中的潜力而引起了很多兴趣。在这种情况下,已经证明多模式方法可以通过结合多样化和互补的信息来源,从而提高性能(超过单峰方法),从而为嘈杂和缺失的方式提供了一些鲁棒性。在本文中,我们根据从视频中提取的面部和声音方式融合的尺寸ER专注于尺寸,其中探索了互补的视听(A-V)关系,以预测个人在价值空间中的情绪状态。大多数最先进的融合技术都依赖于反复的网络或常规的注意机制,这些机制无法有效利用A-V模式的互补性。为了解决这个问题,我们引入了A-V融合的联合跨注意模型,该模型在A-V模态上提取显着特征,从而可以有效利用模式间关系,同时保留模式内关系。特别是,它根据联合特征表示与单个模式的相关性计算交叉意义权重。通过将联合A-V特征表示形式部署到交叉意见模块中,它有助于同时利用内模式和模态关系,从而显着改善系统的性能,而不是香草交叉意见模块。我们提出的方法的有效性是在Recola和AffWild2数据集的挑战性视频中通过实验验证的。结果表明,我们的跨注意A-V融合模型提供了一种具有成本效益的解决方案,即使模式是嘈杂或不存在的,也可以超越最先进的方法。
translated by 谷歌翻译
Facial Expression Recognition (FER) in the wild is an extremely challenging task. Recently, some Vision Transformers (ViT) have been explored for FER, but most of them perform inferiorly compared to Convolutional Neural Networks (CNN). This is mainly because the new proposed modules are difficult to converge well from scratch due to lacking inductive bias and easy to focus on the occlusion and noisy areas. TransFER, a representative transformer-based method for FER, alleviates this with multi-branch attention dropping but brings excessive computations. On the contrary, we present two attentive pooling (AP) modules to pool noisy features directly. The AP modules include Attentive Patch Pooling (APP) and Attentive Token Pooling (ATP). They aim to guide the model to emphasize the most discriminative features while reducing the impacts of less relevant features. The proposed APP is employed to select the most informative patches on CNN features, and ATP discards unimportant tokens in ViT. Being simple to implement and without learnable parameters, the APP and ATP intuitively reduce the computational cost while boosting the performance by ONLY pursuing the most discriminative features. Qualitative results demonstrate the motivations and effectiveness of our attentive poolings. Besides, quantitative results on six in-the-wild datasets outperform other state-of-the-art methods.
translated by 谷歌翻译
在大多数领域,从人工智能和游戏到人类计算机互动(HCI)和心理学,面部表情识别是一个重要的研究主题。本文提出了一个用于面部表达识别的混合模型,该模型包括深度卷积神经网络(DCNN)和HAAR级联深度学习体系结构。目的是将实时和数字面部图像分类为所考虑的七个面部情感类别之一。这项研究中使用的DCNN具有更多的卷积层,恢复激活功能以及多个内核,以增强滤波深度和面部特征提取。此外,HAAR级联模型还相互用于检测实时图像和视频帧中的面部特征。来自Kaggle存储库(FER-2013)的灰度图像,然后利用图形处理单元(GPU)计算以加快培训和验证过程。预处理和数据增强技术用于提高培训效率和分类性能。实验结果表明,与最先进的实验和研究相比,分类性能有了显着改善的分类性能。同样,与其他常规模型相比,本文验证了所提出的体系结构在分类性能方面表现出色,提高了6%,总计高达70%的精度,并且执行时间较小,为2098.8S。
translated by 谷歌翻译
自动影响使用视觉提示的识别是对人类和机器之间完全互动的重要任务。可以在辅导系统和人机交互中找到应用程序。朝向该方向的关键步骤是面部特征提取。在本文中,我们提出了一个面部特征提取器模型,由Realey公司提供的野外和大规模收集的视频数据集培训。数据集由百万标记的框架组成,2,616万科目。随着时间信息对情绪识别域很重要,我们利用LSTM单元来捕获数据中的时间动态。为了展示我们预先训练的面部影响模型的有利性质,我们使用Recola数据库,并与当前的最先进的方法进行比较。我们的模型在一致的相关系数方面提供了最佳结果。
translated by 谷歌翻译
多模式分析最近对情感计算的兴趣很大,因为它可以提高情感识别对孤立的单模态方法的整体准确性。多式联情绪识别最有效的技术有效地利用各种和互补的信息来源,例如面部,声带和生理方式,提供全面的特征表示。在本文中,我们专注于基于视频中提取的面部和声乐方式的融合的尺寸情感识别,其中可以捕获复杂的时空关系。大多数现有的融合技术依赖于经常性网络或传统的注意机制,这些机制没有有效地利用视听(A-V)方式的互补性质。我们介绍了一种跨关注融合方法来提取A-V模式的显着特征,允许准确地预测连续值的价值和唤醒。我们的新的跨关节A-V融合模型有效利用了模态关系。特别地,它计算跨关注权重,以专注于各个模态跨越更贡献的特征,从而组合贡献特征表示,然后将其馈送到完全连接的层以用于预测价和唤醒。所提出的方法的有效性在通过Recolat和疲劳(私人)数据集中的视频上进行了实验验证。结果表明,我们的跨关节A-V融合模型是一种经济高效的方法,优于最先进的融合方法。代码可用:\ url {https://github.com/praveena2j/cross-attentional-av-fusion}
translated by 谷歌翻译
使用卷积神经网络,面部属性(例如,年龄和吸引力)估算性能得到了大大提高。然而,现有方法在培训目标和评估度量之间存在不一致,因此它们可能是次优。此外,这些方法始终采用具有大量参数的图像分类或面部识别模型,其携带昂贵的计算成本和存储开销。在本文中,我们首先分析了两种最新方法(排名CNN和DLDL)之间的基本关系,并表明排名方法实际上是隐含的学习标签分布。因此,该结果首先将两个现有的最新方法统一到DLDL框架中。其次,为了减轻不一致和降低资源消耗,我们设计了一种轻量级网络架构,并提出了一个统一的框架,可以共同学习面部属性分发和回归属性值。在面部年龄和吸引力估算任务中都证明了我们的方法的有效性。我们的方法使用单一模型实现新的最先进的结果,使用36美元\倍,参数减少3美元,在面部年龄/吸引力估算上的推动速度为3美元。此外,即使参数的数量进一步降低到0.9m(3.8MB磁盘存储),我们的方法也可以实现与最先进的结果。
translated by 谷歌翻译
在情感计算领域的基于生理信号的情感识别,已经支付了相当大的关注。对于可靠性和用户友好的采集,电卸电子活动(EDA)在实际应用中具有很大的优势。然而,基于EDA的情感识别与数百个科目仍然缺乏有效的解决方案。在本文中,我们的工作试图融合主题的各个EDA功能和外部诱发的音乐功能。我们提出了端到端的多模式框架,1维剩余时间和通道注意网络(RTCAN-1D)。对于EDA特征,基于新型的基于凸优化的EDA(CVXEDA)方法被应用于将EDA信号分解为PAHSIC和TONC信号,以进行动态和稳定的功能。首先涉及基于EDA的情感识别的渠道时间关注机制,以改善时间和渠道明智的表示。对于音乐功能,我们将音乐信号与开源工具包opensmile处理,以获取外部特征向量。来自EDA信号和来自音乐的外部情绪基准的个体情感特征在分类层中融合。我们对三个多模式数据集(PMEMO,DEAP,AMIGOS)进行了系统的比较,适用于2级薪酬/唤醒情感识别。我们提出的RTCAN-1D优于现有的最先进的模型,这也验证了我们的工作为大规模情感认可提供了可靠和有效的解决方案。我们的代码已在https://github.com/guanghaoyin/rtcan-1发布。
translated by 谷歌翻译
来自静态图像的面部表情识别是计算机视觉应用中的一个具有挑战性的问题。卷积神经网络(CNN),用于各种计算机视觉任务的最先进的方法,在预测具有极端姿势,照明和闭塞条件的面部的表达式中已经有限。为了缓解这个问题,CNN通常伴随着传输,多任务或集合学习等技术,这些技术通常以增加的计算复杂性的成本提供高精度。在这项工作中,我们提出了一种基于零件的集合转移学习网络,其模型通过将面部特征的空间方向模式与特定表达相关来模拟人类如何识别面部表达。它由5个子网络组成,每个子网络从面部地标的五个子集中执行转移学习:眉毛,眼睛,鼻子,嘴巴或颌骨表达分类。我们表明我们所提出的集合网络使用从面部肌肉的电机运动发出的视觉模式来预测表达,并展示从面部地标定位转移到面部表情识别的实用性。我们在CK +,Jaffe和SFew数据集上测试所提出的网络,并且它分别优于CK +和Jaffe数据集的基准,分别为0.51%和5.34%。此外,所提出的集合网络仅包括1.65M的型号参数,确保在培训和实时部署期间的计算效率。我们所提出的集合的Grad-Cam可视化突出了其子网的互补性质,是有效集合网络的关键设计参数。最后,交叉数据集评估结果表明,我们建议的集合具有高泛化能力,使其适合现实世界使用。
translated by 谷歌翻译
本文提出了一个多模式的情感识别系统,即视觉口语文本添加剂网(Vista Net),以将包含图像,语音和文本的多模式输入反映的情绪分类为离散类。还开发了一种新的可解释性技术,即K平均添加剂解释(KAAP),以确定重要的视觉,口语和文本特征,从而预测特定的情感类别。 Vista Net使用早期和晚期融合的混合体从图像,语音和文本方式融合信息。它会自动调整其中间输出的权重,同时在不干预的情况下计算加权平均值。 KAAP技术计算每种方式和相应特征在预测特定情绪类别的贡献。为了减轻带有离散情绪类别标记的多模式情感数据集的不足,我们构建了一个大规模的IIT-R MMEMOREC数据集,该数据集由现实生活中的图像,相应的语音和文本和情感标签(“愤怒,'快乐,''happy,''快乐,'' “恨,”和“悲伤”。)。 Vista Net在考虑图像,语音和文本方式上导致了95.99%的情绪识别精度,这比考虑任何一种或两种方式的输入的表现要好。
translated by 谷歌翻译
在本文中,我们介绍了2022年多模式情感分析挑战(MUSE)的解决方案,其中包括Muse-Humor,Muse-Rection和Muse Surns Sub-Challenges。 2022年穆斯穆斯(Muse 2022)着重于幽默检测,情绪反应和多模式的情感压力,利用不同的方式和数据集。在我们的工作中,提取了不同种类的多模式特征,包括声学,视觉,文本和生物学特征。这些功能由Temma和Gru融合到自发机制框架中。在本文中,1)提取了一些新的音频功能,面部表达功能和段落级文本嵌入以进行准确的改进。 2)我们通过挖掘和融合多模式特征来显着提高多模式情感预测的准确性和可靠性。 3)在模型培训中应用有效的数据增强策略,以减轻样本不平衡问题并防止模型形成学习有偏见的主题字符。对于博物馆的子挑战,我们的模型获得了0.8932的AUC分数。对于Muse Rection子挑战,我们在测试集上的Pearson相关系数为0.3879,它的表现优于所有其他参与者。对于Muse Surst Sub-Challenge,我们的方法在测试数据集上的唤醒和价值都优于基线,达到了0.5151的最终综合结果。
translated by 谷歌翻译
在最新的社交网络中,越来越多的人喜欢通过文字,语音和丰富的面部表情在视频中表达自己的情绪。多模式的视频情感分析技术可以根据图像中的人类表情和手势,声音和公认的自然语言自动理解用户的内部世界。但是,在现有研究中,与视觉和文本方式相比,声学方式长期以来一直处于边缘位置。也就是说,改善声学方式对整个多模式识别任务的贡献往往更加困难。此外,尽管可以通过引入常见的深度学习方法来获得更好的性能,但是这些训练模型的复杂结构始终会导致推理效率低,尤其是在暴露于高分辨率和长长视频时。此外,缺乏完全端到端的多模式视频情感识别系统阻碍了其应用。在本文中,我们为快速而有效的识别推断设计了一个完全多模式的视频对情感系统(名称为FV2E),其好处是三倍:(1)在声音中,通过有限的贡献,采用了层次结构注意方法。在声学模态上,在IEMOCAP和CMU-MOSEI数据集上胜过现有模型的性能; (2)引入视觉提取的多尺度的想法,而单一用于推理的想法会带来更高的效率,并同时保持预测准确性; (3)将预处理数据的数据进一步集成到对齐的多模式学习模型中,可以显着降低计算成本和存储空间。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
微表达(MES)是非自愿的面部运动,揭示了人们在高利害情况下隐藏的感受,并对医疗,国家安全,审讯和许多人机交互系统具有实际重要性。早期的MER方法主要基于传统的外观和几何特征。最近,随着各种领域的深度学习(DL)的成功,神经网络已得到MER的兴趣。不同于宏观表达,MES是自发的,微妙的,快速的面部运动,导致数据收集困难,因此具有小规模的数据集。由于上述我的角色,基于DL的MER变得挑战。迄今为止,已提出各种DL方法来解决我的问题并提高MER表现。在本调查中,我们对深度微表达识别(MER)进行了全面的审查,包括数据集,深度MER管道和最具影响力方法的基准标记。本调查定义了该领域的新分类法,包括基于DL的MER的所有方面。对于每个方面,总结和讨论了基本方法和高级发展。此外,我们得出了坚固的深层MER系统设计的剩余挑战和潜在方向。据我们所知,这是对深度MEL方法的第一次调查,该调查可以作为未来MER研究的参考点。
translated by 谷歌翻译
步态情绪识别在智能系统中起着至关重要的作用。大多数现有方法通过随着时间的推移专注于当地行动来识别情绪。但是,他们忽略了时间域中不同情绪的有效距离是不同的,而且步行过程中的当地行动非常相似。因此,情绪应由全球状态而不是间接的本地行动代表。为了解决这些问题,这项工作通过构建动态的时间接受场并设计多尺度信息聚集以识别情绪,从而在这项工作中介绍了新型的多量表自适应图卷积网络(MSA-GCN)。在我们的模型中,自适应选择性时空图卷积旨在动态选择卷积内核,以获得不同情绪的软时空特征。此外,跨尺度映射融合机制(CSFM)旨在构建自适应邻接矩阵,以增强信息相互作用并降低冗余。与以前的最先进方法相比,所提出的方法在两个公共数据集上实现了最佳性能,将地图提高了2 \%。我们还进行了广泛的消融研究,以显示不同组件在我们的方法中的有效性。
translated by 谷歌翻译
情绪识别涉及几个现实世界应用。随着可用方式的增加,对情绪的自动理解正在更准确地进行。多模式情感识别(MER)的成功主要依赖于监督的学习范式。但是,数据注释昂贵,耗时,并且由于情绪表达和感知取决于几个因素(例如,年龄,性别,文化),获得具有高可靠性的标签很难。由这些动机,我们专注于MER的无监督功能学习。我们考虑使用离散的情绪,并用作模式文本,音频和视觉。我们的方法是基于成对方式之间的对比损失,是MER文献中的第一次尝试。与现有的MER方法相比,我们的端到端特征学习方法具有几种差异(和优势):i)无监督,因此学习缺乏数据标记成本; ii)它不需要数据空间增强,模态对准,大量批量大小或时期; iii)它仅在推理时应用数据融合; iv)它不需要对情绪识别任务进行预训练的骨干。基准数据集上的实验表明,我们的方法优于MER中应用的几种基线方法和无监督的学习方法。特别是,它甚至超过了一些有监督的MER最先进的。
translated by 谷歌翻译