Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128×128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.
translated by 谷歌翻译
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.
translated by 谷歌翻译
生成的对抗网络(GANS)产生高质量的图像,但致力于训练。它们需要仔细正常化,大量计算和昂贵的超参数扫描。我们通过将生成和真实样本投影到固定的预级特征空间中,在这些问题上进行了重要的头路。发现鉴别者无法充分利用来自预押模型的更深层次的特征,我们提出了更有效的策略,可以在渠道和分辨率中混合特征。我们预计的GaN提高了图像质量,样品效率和收敛速度。它与最多一个百万像素的分辨率进一步兼容,并在二十二个基准数据集上推进最先进的FR \'Echet Inception距离(FID)。重要的是,预计的GAN符合先前最低的FID速度快40倍,鉴于相同的计算资源,将壁钟时间从5天切割到不到3小时。
translated by 谷歌翻译
Adversarially trained generative models (GANs) have recently achieved compelling image synthesis results. But despite early successes in using GANs for unsupervised representation learning, they have since been superseded by approaches based on self-supervision. In this work we show that progress in image generation quality translates to substantially improved representation learning performance. Our approach, BigBiGAN, builds upon the state-of-the-art BigGAN model, extending it to representation learning by adding an encoder and modifying the discriminator. We extensively evaluate the representation learning and generation capabilities of these BigBiGAN models, demonstrating that these generation-based models achieve the state of the art in unsupervised representation learning on ImageNet, as well as in unconditional image generation. Pretrained BigBiGAN models -including image generators and encoders -are available on TensorFlow Hub 1 .
translated by 谷歌翻译
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
现代生成的对抗网络(GANS)主要使用判别者(或批评者)中的分段线性激活功能,包括Relu和Leaceryru。这些模型学习分段线性映射,其中每个部分处理输入空间的子集,每个子​​集的梯度​​是分段常数。在这样一类鉴别者(或批评者)函数下,我们呈现梯度标准化(Gran),一种新的输入相关标准化方法,可确保输入空间中的分段k-lipschitz约束。与光谱归一化相比,Gran不约束各个网络层的处理,并且与梯度惩罚不同,严格执行几乎无处不在的分段Lipschitz约束。凭经验,我们展示了多个数据集的改进了图像生成性能(包括Cifar-10/100,STL-10,LSUN卧室和Celeba),GaN丢失功能和指标。此外,我们分析了在几个标准GAN中改变了经常无核的Lipschitz常数K,而不仅仅是实现显着的性能增益,还可以在普通的ADAM优化器中找到K和培训动态之间的连接,特别是在低梯度损失平台之间。
translated by 谷歌翻译
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CELEBA images at 1024 2 . We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CELEBA dataset.
translated by 谷歌翻译
Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
深尾学习旨在培训有用的深层网络,以实用现实世界中的不平衡分布,其中大多数尾巴类别的标签都与一些样本相关联。有大量的工作来训练判别模型,以进行长尾分布的视觉识别。相比之下,我们旨在训练有条件的生成对抗网络,这是一类长尾分布的图像生成模型。我们发现,类似于识别图像产生的最新方法类似,也遭受了尾部类别的性能降解。性能降解主要是由于尾部类别的类别模式塌陷,我们观察到与调节参数矩阵的光谱爆炸相关。我们提出了一种新型的组光谱正规剂(GSR),以防止光谱爆炸减轻模式崩溃,从而导致尾巴类别的形象产生多样化和合理的图像产生。我们发现GSR有效地与现有的增强和正则化技术结合在一起,从而导致长尾数据上的最新图像生成性能。广泛的实验证明了我们的常规器在不同程度不平衡的长尾数据集上的功效。
translated by 谷歌翻译
One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques. The code with Chainer (Tokui et al., 2015), generated images and pretrained models are available at https://github.com/pfnet-research/sngan_ projection.
translated by 谷歌翻译
近期对抗性生成建模的突破导致了能够生产高质量的视频样本的模型,即使在真实世界视频的大型和复杂的数据集上也是如此。在这项工作中,我们专注于视频预测的任务,其中给出了从视频中提取的一系列帧,目标是生成合理的未来序列。我们首先通过对鉴别器分解进行系统的实证研究并提出产生更快的收敛性和更高性能的系统来提高本领域的最新技术。然后,我们分析发电机中的复发单元,并提出了一种新的复发单元,其根据预测的运动样本来改变其过去的隐藏状态,并改进它以处理DIS闭塞,场景变化和其他复杂行为。我们表明,这种经常性单位始终如一地优于以前的设计。我们的最终模型导致最先进的性能中的飞跃,从大型动力学-600数据集中获得25.7的测试集Frechet视频距离为25.7,下降到69.2。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models with continuous generators. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms. † * Now at Google Brain † Code for our models is available at https://github.com/igul222/improved_wgan_training.
translated by 谷歌翻译
变压器在计算机视觉中变得普遍,特别是对于高级视觉任务。然而,采用生成的对抗性网络(GaN)框架中的变压器仍然是一个开放但具有挑战性的问题。本文进行了一项全面的实证研究,探讨了高保真图像合成的GaN中变压器的性能。我们的分析亮点并重申了特征局部度在图像生成中的重要性,尽管局部性的优点在分类任务中是众所周知的。也许更有趣的是,我们发现自我关注层中的残余连接有害,以利用基于变压器的鉴别器和条件发电机。我们仔细检查了影响力,并提出了减轻负面影响的有效方法。我们的研究导致GaN中的变压器的新替代设计,卷积神经网络(CNN) - 免费发电机称为晶体 - G,这在无条件和条件图像代中实现了竞争导致。基于变压器的鉴别器,Strans-D也显着降低了其基于CNN的鉴别器的间隙。
translated by 谷歌翻译
本文提出了一种新颖的卷积层,称为扰动卷积(PCONV),该层侧重于同时实现两个目标:改善生成的对抗网络(GaN)性能并减轻判断者将所有图像从给定数据集记住的记忆问题,因为培训进步。在PCONV中,通过在执行卷积操作之前随机扰乱输入张量来产生扰动特征。这种方法很简单,但令人惊讶地有效。首先,为了产生类似的输出,即使使用扰动的张量,鉴别器中的每层也应该学习具有小本地嘴唇尖端值的鲁棒特征。其次,由于输入张量在培训过程中随机扰乱了神经网络中的辍学时,可以减轻记忆问题。为了展示所提出的方法的泛化能力,我们对各种丢失函数和数据集进行了广泛的实验,包括CIFAR-10,Celeba,Celeba-HQ,LSUN和微型想象成。定量评估表明,在FRECHET成立距离(FID)方面,PCONV有效地提高了GaN和条件GaN的性能。
translated by 谷歌翻译
神经架构的创新促进了语言建模和计算机视觉中的重大突破。不幸的是,如果网络参数未正确初始化,新颖的架构通常会导致挑战超参数选择和培训不稳定。已经提出了许多架构特定的初始化方案,但这些方案并不总是可移植到新体系结构。本文介绍了毕业,一种用于初始化神经网络的自动化和架构不可知论由方法。毕业基础是一个简单的启发式;调整每个网络层的规范,使得具有规定的超参数的SGD或ADAM的单个步骤导致可能的损耗值最小。通过在每个参数块前面引入标量乘数变量,然后使用简单的数字方案优化这些变量来完成此调整。 GradInit加速了许多卷积架构的收敛性和测试性能,无论是否有跳过连接,甚至没有归一化层。它还提高了机器翻译的原始变压器架构的稳定性,使得在广泛的学习速率和动量系数下使用ADAM或SGD来训练它而无需学习速率预热。代码可在https://github.com/zhuchen03/gradinit上获得。
translated by 谷歌翻译
我们表明,级联扩散模型能够在类条件的想象生成基准上生成高保真图像,而无需辅助图像分类器的任何帮助来提高样品质量。级联的扩散模型包括多个扩散模型的流水线,其产生越来越多的分辨率,以最低分辨率的标准扩散模型开始,然后是一个或多个超分辨率扩散模型,其连续上追随图像并添加更高的分辨率细节。我们发现级联管道的样本质量至关重要的是调节增强,我们提出的数据增强较低分辨率调节输入到超级分辨率模型的方法。我们的实验表明,调节增强防止在级联模型中采样过程中的复合误差,帮助我们在256×256分辨率下,在128x128和4.88,优于63.02的分类精度分数,培训级联管道。 %(TOP-1)和84.06%(TOP-5)在256x256,优于VQ-VAE-2。
translated by 谷歌翻译
The performance of generative adversarial networks (GANs) heavily deteriorates given a limited amount of training data. This is mainly because the discriminator is memorizing the exact training set. To combat it, we propose Differentiable Augmentation (DiffAugment), a simple method that improves the data efficiency of GANs by imposing various types of differentiable augmentations on both real and fake samples. Previous attempts to directly augment the training data manipulate the distribution of real images, yielding little benefit; DiffAugment enables us to adopt the differentiable augmentation for the generated samples, effectively stabilizes training, and leads to better convergence. Experiments demonstrate consistent gains of our method over a variety of GAN architectures and loss functions for both unconditional and class-conditional generation. With DiffAugment, we achieve a state-of-the-art FID of 6.80 with an IS of 100.8 on ImageNet 128×128 and 2-4× reductions of FID given 1,000 images on FFHQ and LSUN. Furthermore, with only 20% training data, we can match the top performance on CIFAR-10 and CIFAR-100. Finally, our method can generate high-fidelity images using only 100 images without pre-training, while being on par with existing transfer learning algorithms. Code is available at https://github.com/mit-han-lab/data-efficient-gans.
translated by 谷歌翻译
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
translated by 谷歌翻译