我们建议使用实例检测(实例检测)的新方法,合成优化的布局,以预处理对象检测器具有合成图像。我们的“固体”方法由两个主要组成部分组成:(1)使用具有优化场景布置的未标记的3D模型生成合成图像;(2)在“实例检测”任务上预修对象检测器 - 给定描绘对象的查询图像,检测目标图像中完全相同对象的所有实例。我们的方法不需要任何语义标签来进行预处理,并允许使用任意,不同的3D模型。对可可的实验表明,通过优化的数据生成和适当的预处理任务,合成数据可以是预处理对象探测器的高效数据。特别是,对渲染图像进行预修会在实际图像上预处理,同时使用明显较少的计算资源,从而实现了性能竞争。代码可在https://github.com/princeton-vl/solid上找到。
translated by 谷歌翻译
基于对比的学习的预培训的目标是利用大量的未标记数据来产生可以容易地调整下游的模型。电流方法围绕求解图像辨别任务:给定锚图像,该图像的增强对应物和一些其他图像,该模型必须产生表示,使得锚和其对应物之间的距离很小,并且锚和其他图像很大。这种方法存在两个重要问题:(i)通过对比图像级别的表示,很难生成有利于下游对象级任务(如实例分段)的详细对象敏感功能; (ii)制造增强对应的增强策略是固定的,在预培训的后期阶段做出更低的学习。在这项工作中,我们引入课程对比对象级预培训(CCOP)来解决这些问题:(i)我们使用选择性搜索来查找粗略对象区域并使用它们构建图像间对象级对比度损耗和一个图像内对象级别歧视损失进入我们的预训练目标; (ii)我们提出了一种课程学习机制,其自适应地增强所生成的区域,这允许模型一致地获取有用的学习信号,即使在预训练的后期阶段也是如此。我们的实验表明,当在多对象场景图像数据集上进行预训练时,我们的方法通过大量对象级任务的大幅度提高了MoCo V2基线。代码可在https://github.com/chenhongyiyang/ccop中找到。
translated by 谷歌翻译
近年来,人员检测和人类姿势估计已经取得了很大的进步,通过大规模标记的数据集帮助。但是,这些数据集没有保证或分析人类活动,姿势或情境多样性。此外,隐私,法律,安全和道德问题可能会限制收集更多人类数据的能力。一个新兴的替代方案,用于减轻这些问题的一些问题是合成数据。然而,综合数据生成器的创建令人难以置信的具有挑战性,并防止研究人员探索他们的实用性。因此,我们释放了一个以人为本的合成数据发生器PeoplesAnspeople,它包含模拟就绪3D人类资产,参数化照明和相机系统,并生成2D和3D边界框,实例和语义分段,以及Coco姿态标签。使用PeoplesAnspeople,我们使用Detectron2 KeyPoint R-CNN变体进行基准合成数据训练[1]。我们发现,使用合成数据进行预培训网络和对目标现实世界数据的微调(几次传输到Coco-Person Rain的有限子集[2])导致了60.37 $ 60.37 $的关键点AP( Coco Test-Dev2017)使用相同的实际数据培训的型号优于同一实际数据(35.80美元的Keypoint AP),并使用Imagenet预先培训(Keypoint AP为57.50美元)。这种自由可用的数据发生器应使其在人用于人工以人为主的计算机视野中的临界领域进行实际转移学习的新兴仿真领域。
translated by 谷歌翻译
Building instance segmentation models that are dataefficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation (e.g., [13,12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
一个3D场景由一组对象组成,每个对象都有一个形状和一个布局,使其在太空中的位置。从2D图像中了解3D场景是一个重要的目标,并具有机器人技术和图形的应用。尽管最近在预测单个图像的3D形状和布局方面取得了进步,但大多数方法都依赖于3D地面真相来进行训练,这很昂贵。我们克服了这些局限性,并提出了一种方法,该方法学会预测对象的3D形状和布局,而无需任何地面真相形状或布局信息:相反,我们依靠具有2D监督的多视图图像,可以更轻松地按大规模收集。通过在3D仓库,Hypersim和扫描仪上进行的广泛实验,我们证明了我们的进近量表与逼真的图像的大型数据集相比,并与依赖3D地面真理的方法进行了比较。在Hypersim和Scannet上,如果没有可靠的3D地面真相,我们的方法优于在较小和较少的数据集上训练的监督方法。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning [29] as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.
translated by 谷歌翻译
带有像素天标签的注释图像是耗时和昂贵的过程。最近,DataSetGan展示了有希望的替代方案 - 通过利用一小组手动标记的GaN生成的图像来通过生成的对抗网络(GAN)来综合大型标记数据集。在这里,我们将DataSetGan缩放到ImageNet类别的规模。我们从ImageNet上训练的类条件生成模型中拍摄图像样本,并为所有1K类手动注释每个类的5张图像。通过在Biggan之上培训有效的特征分割架构,我们将Bigan转换为标记的DataSet生成器。我们进一步表明,VQGan可以类似地用作数据集生成器,利用已经注释的数据。我们通过在各种设置中标记一组8K实图像并在各种设置中评估分段性能来创建一个新的想象因基准。通过广泛的消融研究,我们展示了利用大型生成的数据集来培训在像素 - 明智的任务上培训不同的监督和自我监督的骨干模型的大增益。此外,我们证明,使用我们的合成数据集进行预培训,以改善在几个下游数据集上的标准Imagenet预培训,例如Pascal-VOC,MS-Coco,Citycapes和Chink X射线以及任务(检测,细分)。我们的基准将公开并维护一个具有挑战性的任务的排行榜。项目页面:https://nv-tlabs.github.io/big-dataseTgan/
translated by 谷歌翻译
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation.
translated by 谷歌翻译
现有的计算机视觉系统可以与人类竞争,以理解物体的可见部分,但在描绘部分被遮挡物体的无形部分时,仍然远远远远没有达到人类。图像Amodal的完成旨在使计算机具有类似人类的Amodal完成功能,以了解完整的对象,尽管该对象被部分遮住。这项调查的主要目的是对图像Amodal完成领域的研究热点,关键技术和未来趋势提供直观的理解。首先,我们对这个新兴领域的最新文献进行了全面的评论,探讨了图像Amodal完成中的三个关键任务,包括Amodal形状完成,Amodal外观完成和订单感知。然后,我们检查了与图像Amodal完成有关的流行数据集及其共同的数据收集方法和评估指标。最后,我们讨论了现实世界中的应用程序和未来的研究方向,以实现图像的完成,从而促进了读者对现有技术和即将到来的研究趋势的挑战的理解。
translated by 谷歌翻译
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to "instance-level" 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either training or testing time. To handle different and unseen object instances in a given category, we introduce Normalized Object Coordinate Space (NOCS)-a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new contextaware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
translated by 谷歌翻译
对比的自我监督学习在很大程度上缩小了对想象成的预先训练的差距。然而,它的成功高度依赖于想象成的以对象形象,即相同图像的不同增强视图对应于相同的对象。当预先训练在具有许多物体的更复杂的场景图像上,如此重种策划约束会立即不可行。为了克服这一限制,我们介绍了对象级表示学习(ORL),这是一个新的自我监督的学习框架迈向场景图像。我们的主要洞察力是利用图像级自我监督的预培训作为发现对象级语义对应之前的,从而实现了从场景图像中学习的对象级表示。对Coco的广泛实验表明,ORL显着提高了自我监督学习在场景图像上的性能,甚至超过了在几个下游任务上的监督Imagenet预训练。此外,当可用更加解标的场景图像时,ORL提高了下游性能,证明其在野外利用未标记数据的巨大潜力。我们希望我们的方法可以激励未来的研究从场景数据的更多通用无人监督的代表。
translated by 谷歌翻译
A hallmark of the deep learning era for computer vision is the successful use of large-scale labeled datasets to train feature representations for tasks ranging from object recognition and semantic segmentation to optical flow estimation and novel view synthesis of 3D scenes. In this work, we aim to learn dense discriminative object representations for low-shot category recognition without requiring any category labels. To this end, we propose Deep Object Patch Encodings (DOPE), which can be trained from multiple views of object instances without any category or semantic object part labels. To train DOPE, we assume access to sparse depths, foreground masks and known cameras, to obtain pixel-level correspondences between views of an object, and use this to formulate a self-supervised learning task to learn discriminative object patches. We find that DOPE can directly be used for low-shot classification of novel categories using local-part matching, and is competitive with and outperforms supervised and self-supervised learning baselines. Code and data available at https://github.com/rehg-lab/dope_selfsup.
translated by 谷歌翻译
自我监督学习(SSL)的承诺是利用大量未标记的数据来解决复杂的任务。尽管简单,图像级学习取得了出色的进步,但最新方法显示出包括图像结构知识的优势。但是,通过引入手工制作的图像分割来定义感兴趣的区域或专门的增强策略,这些方法牺牲了使SSL如此强大的简单性和通用性。取而代之的是,我们提出了一个自我监督的学习范式,该学习范式本身会发现这种图像结构。我们的方法,ODIN,夫妻对象发现和表示网络,以发现有意义的图像分割,而无需任何监督。由此产生的学习范式更简单,更易碎,更一般,并且取得了最先进的转移学习结果,以进行对象检测和实例对可可的细分,以及对Pascal和CityScapes的语义细分,同时超过监督的预先培训,用于戴维斯的视频细分。
translated by 谷歌翻译
We present DetCo, a simple yet effective self-supervised approach for object detection. Unsupervised pre-training methods have been recently designed for object detection, but they are usually deficient in image classification, or the opposite. Unlike them, DetCo transfers well on downstream instance-level dense prediction tasks, while maintaining competitive image-level classification accuracy. The advantages are derived from (1) multi-level supervision to intermediate representations, (2) contrastive learning between global image and local patches. These two designs facilitate discriminative and consistent global and local representation at each level of feature pyramid, improving detection and classification, simultaneously.Extensive experiments on VOC, COCO, Cityscapes, and ImageNet demonstrate that DetCo not only outperforms recent methods on a series of 2D and 3D instance-level detection tasks, but also competitive on image classification. For example, on ImageNet classification, DetCo is 6.9% and 5.0% top-1 accuracy better than InsLoc and DenseCL, which are two contemporary works designed for object detection. Moreover, on COCO detection, DetCo is 6.9 AP better than SwAV with Mask R-CNN C4. Notably, DetCo largely boosts up Sparse R-CNN, a recent strong detector, from 45.0 AP to 46.5 AP (+1.5 AP), establishing a new SOTA on COCO. Code is available.
translated by 谷歌翻译
我们介绍了一种新的合成数据生成器PSP-HDRI $+$,该$+$被证明是ImageNet和其他大规模合成数据对应物的卓越预训练替代方案。我们证明,使用合成数据的预训练将产生一个更通用的模型,即使在分布外(OOD)集测试时,该模型的性能也比替代方案更好。此外,使用由人关键点估计指标指导的消融研究,具有现成的模型架构,我们展示了如何操纵我们的合成数据生成器以进一步提高模型性能。
translated by 谷歌翻译
事实证明,无监督的表示学习方法在学习目标数据集的视觉语义方面有效。这些方法背后的主要思想是,同一图像的不同视图代表相同的语义。在本文中,我们进一步引入了一个附加模块,以促进对样品之间空间跨相关性的知识注入。反过来,这导致了类内部信息的提炼,包括特征级别的位置和同类实例之间的相似性。建议的附加组件可以添加到现有方法中,例如SWAV。稍后,我们可以删除用于推理的附加模块,而无需修改学识的权重。通过一系列广泛的经验评估,我们验证我们的方法在检测类激活图,TOP-1分类准确性和下游任务(例如对象检测)的情况下会提高性能,并具有不同的配置设置。
translated by 谷歌翻译
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to Unsupervisedly Pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade off classification and localization preferences in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection.(2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multiquery patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher average precision on object detection, one-shot detection and panoptic segmentation. Code and pre-training models: https://github.com/dddzg/up-detr.
translated by 谷歌翻译
最近对物体检测的自我监督预防方法在很大程度上专注于预先绘制物体探测器的骨干,忽略了检测架构的关键部分。相反,我们介绍了DetReg,这是一种新的自我监督方法,用于预先列出整个对象检测网络,包括对象本地化和嵌入组件。在预先绘制期间,DetReg预测对象本地化以与无监督区域提议生成器匹配本地化,并同时将相应的特征嵌入与自我监控图像编码器的嵌入式对齐。我们使用DETR系列探测器实施DetReg,并显示它在Coco,Pascal VOC和空中客车船基准上的Fineetuned时改善了竞争性基线。在低数据制度中,包括半监督和几秒钟学习设置,DetReg建立了许多最先进的结果,例如,在Coco上,我们看到10次检测和+3.5的AP改进A +6.0 AP改进当培训只有1%的标签时。对于代码和预用模型,请访问https://amirbar.net/detreg的项目页面
translated by 谷歌翻译