Utilities of knowledge graphs (KGs) depend on their qualities. A KG that is of poor quality not only has little applicability but also leads to some unexpected errors. Therefore, quality evaluation for KGs is crucial and indispensable. Existing methods design many quality dimensions and calculate metrics in the corresponding dimensions based on details (i.e., raw data and graph structures) of KGs for evaluation. However, there are two major issues. On one hand, they consider the details as public information, which exposes the raw data and graph structures. These details are strictly confidential because they involve commercial privacy or others in practice. On the other hand, the existing methods focus on how much knowledge KGs have rather than KGs' practicability. To address the above problems, we propose a knowledge graph quality evaluation framework under incomplete information (QEII). The quality evaluation problem is transformed into an adversarial game, and the relative quality is evaluated according to the winner and loser. Participants of the game are KGs, and the adversarial gameplay is to question and answer (Q&A). In the QEII, we generate and train a question model and an answer model for each KG. The question model of a KG first asks a certain number of questions to the other KG. Then it evaluates the answers returned by the answer model of the other KG and outputs a percentage score. The relative quality is evaluated by the scores, which measures the ability to apply knowledge. Q&A messages are the only information that KGs exchange, without exposing any raw data and graph structure. Experimental results on two pairs of KGs demonstrate that, comparing with baselines, the QEII realizes a reasonable quality evaluation from the perspective of third-party evaluators under incomplete information.
translated by 谷歌翻译
这项工作调查了以知识图(kg)形式的外部知识来源的理解问题的学习和推理的挑战。我们提出了一种新型的图形神经网络体系结构,称为动态相关图形网络(DRGN)。 DRGN根据问题和答案实体在给定的KG子图上运行,并使用节点之间的相关得分来动态建立新的边缘,以在图形网络中学习节点表示。相关性的这种显式用法作为图表具有以下优点,a)模型可以利用现有关系,重新缩放节点权重,并影响邻里节点的表示方式在kg子图中汇总的方式,b)恢复推理所需的千克中缺失的边缘。此外,作为副产品,由于考虑了问题节点与图形实体之间的相关性,我们的模型改善了处理负面问题。与最新发布的结果相比,我们提出的方法在两个质量检查基准CommonSenseQA和OpenBookQA上显示了竞争性能。
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG). To cope with the vast search space, existing work usually adopts a two-stage approach: it firstly retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to accurately find the answer entities. Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning. For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the edges on KGs. For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies. Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task. Our codes and data are publicly available at https://github.com/RUCAIBox/UniKGQA.
translated by 谷歌翻译
本文介绍了$ \ mu \ text {kg} $,一个开源python库,用于在知识图上进行表示。 $ \ mu \ text {kg} $支持通过多源知识图(以及单个知识图),多个深度学习库(Pytorch和Tensorflow2),多个嵌入任务(链接预​​测,实体对准,实体键入,实体键入),支持联合表示。 ,以及多源链接预测)以及多个并行计算模式(多进程和多GPU计算)。它目前实现26个流行知识图嵌入模型,并支持16个基准数据集。 $ \ mu \ text {kg} $提供了具有不同任务的简化管道的嵌入技术的高级实现。它还带有高质量的文档,以易于使用。 $ \ mu \ text {kg} $比现有的知识图嵌入库更全面。它对于对各种嵌入模型和任务进行彻底比较和分析非常有用。我们表明,共同学习的嵌入可以极大地帮助知识驱动的下游任务,例如多跳知识图形答案。我们将与相关字段中的最新发展保持一致,并将其纳入$ \ mu \ text {kg} $中。
translated by 谷歌翻译
Biomedical knowledge graphs (KG) are heterogenous networks consisting of biological entities as nodes and relations between them as edges. These entities and relations are extracted from millions of research papers and unified in a single resource. The goal of biomedical multi-hop question-answering over knowledge graph (KGQA) is to help biologist and scientist to get valuable insights by asking questions in natural language. Relevant answers can be found by first understanding the question and then querying the KG for right set of nodes and relationships to arrive at an answer. To model the question, language models such as RoBERTa and BioBERT are used to understand context from natural language question. One of the challenges in KGQA is missing links in the KG. Knowledge graph embeddings (KGE) help to overcome this problem by encoding nodes and edges in a dense and more efficient way. In this paper, we use a publicly available KG called Hetionet which is an integrative network of biomedical knowledge assembled from 29 different databases of genes, compounds, diseases, and more. We have enriched this KG dataset by creating a multi-hop biomedical question-answering dataset in natural language for testing the biomedical multi-hop question-answering system and this dataset will be made available to the research community. The major contribution of this research is an integrated system that combines language models with KG embeddings to give highly relevant answers to free-form questions asked by biologists in an intuitive interface. Biomedical multi-hop question-answering system is tested on this data and results are highly encouraging.
translated by 谷歌翻译
知识库问题应答(KBQA)旨在在外部知识库的帮助下回答自然语言问题。核心思想是找到内部知识与知识库的已知三元组之间的内部知识之间的联系。 KBQA任务管道包含几个步骤,包括实体识别,关系提取和实体链接。这种管道方法意味着任何过程中的错误将不可避免地传播到最终预测。为了解决上述问题,本文提出了一种具有预培训语言模型(PLM)和知识图(KG)的语料库生成 - 检索方法(CGRM)。首先,基于MT5模型,我们设计了两个新的预训练任务:基于段落的知识屏蔽语言建模和问题,以获取知识增强型T5(KT5)模型。其次,在用一系列启发式规则预处理知识图的预处理之后,KT5模型基于处理的三元组生成自然语言QA对。最后,我们通过检索合成数据集直接解决QA。我们在NLPCC-ICCPOL 2016 KBQA数据集上测试我们的方法,结果表明,我们的框架提高了KBQA的性能,直接向前的方法与最先进的方法竞争。
translated by 谷歌翻译
在过去的几年中,临床笔记中的问题回答(QA)引起了很多关注。临床领域中现有的机器阅读理解方法只能处理有关单个临床文本的问题,并且无法检索有关多个患者及其临床笔记的信息。为了处理更复杂的问题,我们旨在从临床注释中创建知识库,以将不同的患者和临床笔记联系起来,并进行知识基础问题答案(KBQA)。根据N2C2数据集中可用的专家注释,我们首先创建了ClinicalKBQA数据集,其中包括大约9K QA对,并使用300多个问题模板涵盖了有关七个医学主题的问题。然后,我们研究了KBQA的一种基于注意力的方面推理(AAR)方法,并分析了答案的不同方面(例如,实体,类型,路径和上下文)对预测的影响。由于设计精良的编码器和注意力机制,AAR方法可实现更好的性能。从我们的实验中,我们发现这两个方面,类型和路径都使模型能够识别满足一般条件的答案,并产生较低的精度和更高的回忆。另一方面,各个方面,实体和上下文通过特定于节点的信息限制答案,并导致更高的精度和较低的回忆。
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
知识图完成最近已广泛研究,以通过主要建模图结构特征来完成三元组中的缺失元素,但对图形结构的稀疏性敏感。期望解决这一挑战的相关文本,例如实体名称和描述,充当知识图(kgs)的另一种表达形式(kgs)。已经提出了几种使用两个编码器的结构和文本消息的方法,但由于未能平衡它们之间的权重有限。并在推理期间保留结构和文本编码器,也遭受了沉重的参数。通过知识蒸馏的激励,我们将知识视为从输入到输出概率的映射,并在稀疏的kgs上提出了一个插件框架VEM2L,以将从文本和结构消息提取到统一的知识中融合知识。具体而言,我们将模型获取的知识分配为两个不重叠的部分:一个部分与训练三元组合的合适能力有关,可以通过激励两个编码者互相学习训练集来融合。另一个反映了未观察到的查询的概括能力。相应地,我们提出了一种新的融合策略,该策略由变量EM算法证明,以融合模型的概括能力,在此期间,我们还应用图形致密操作以进一步缓解稀疏的图形问题。通过结合这两种融合方法,我们最终提出了VEM2L框架。详细的理论证据以及定量和定性实验都证明了我们提出的框架的有效性和效率。
translated by 谷歌翻译
使用从预先接受训练的语言模型(LMS)和知识图表(LMS)和知识图表(kgs)回答问题的问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型千克识别相关知识,(ii)对QA上下文和kg进行联合推理。在这项工作中,我们提出了一种新的模型,QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关评分,我们使用LMS来估计KG节点相对于给定的QA上下文的重要性,以及(ii)联合推理,我们将QA上下文和kg连接到联合图,并通过图形神经网络相互更新它们的表示。我们评估了QA基准的模型(CommanSeaseQA,OpenBookQA)和生物医学(MedQa-USMLE)域名。QA-GNN优于现有的LM和LM + kg模型,并表现出可解释和结构化推理的能力,例如,正确处理问题的否定。
translated by 谷歌翻译
知识图的归纳链路预测旨在预测未见实体之间的缺失联系,而那些未在训练阶段显示的实体。大多数以前的作品都学习实体的特定实体嵌入,这些实体无法处理看不见的实体。最近的几种方法利用封闭子图来获得归纳能力。但是,所有这些作品仅在没有完整的邻近关系的情况下考虑子图的封闭部分,这导致了忽略部分邻近关系的问题,并且很难处理稀疏的子图。为了解决这个问题,我们提出了SNRI子图邻近关系Infomax,它足够从两个方面利用完整的相邻关系:节点特征的相邻关系特征和稀疏子图的相邻关系路径。为了进一步以全球方式建模邻近关系,我们对知识图进行创新的相互信息(MI)最大化。实验表明,SNRI在归纳链路预测任务上的大幅度优于现有的最新方法,并验证以全局方式探索完整的邻近关系的有效性,以表征节点特征和在稀疏子分类上的理由。
translated by 谷歌翻译
在本文中,我们介绍了一种新的基于GNN的知识图形嵌入模型,命名为WGE,以捕获聚焦的图形结构和关联的图形结构。特别是,鉴于知识图形,WGE构建一个无向实体的聚焦图,该图形将实体视为节点。此外,WGE还从关联的约束构造另一个无向图形,将实体和关系视为节点。然后,WGE提出了一种新的架构,即直接在这两个单个图表上使用两个vanilla GNNS,以更好地更新实体和关系的矢量表示,然后是加权得分函数来返回三重分数。实验结果表明,WGE在三个新的和具有挑战性的基准数据集Codex上获得最先进的表演,用于知识图形完成。
translated by 谷歌翻译
在知识图上回答自然语言问题(KGQA)仍然是通过多跳推理理解复杂问题的巨大挑战。以前的努力通常利用与实体相关的文本语料库或知识图(kg)嵌入作为辅助信息来促进答案选择。但是,实体之间隐含的富裕语义远未得到很好的探索。本文提议通过利用关系路径的混合语义来改善多跳kgqa。具体而言,我们基于新颖的旋转和规模的实体链接链接预测框架,集成了关系路径的明确文本信息和隐式kg结构特征。在三个KGQA数据集上进行的广泛实验证明了我们方法的优势,尤其是在多跳场景中。进一步的调查证实了我们方法在问题和关系路径之间的系统协调,以识别答案实体。
translated by 谷歌翻译
知识图表通常掺入到推荐系统,以提高整体性能。由于知识图的推广和规模,大多数知识的关系是不是目标用户项预测有帮助。要利用知识图在推荐系统捕捉目标具体知识的关系,我们需要提炼知识图,以保留有用的信息和完善的知识来捕捉用户的喜好。为了解决这个问题,我们提出了知识感知条件注意网络(KCAN),这是一个终端到终端的模式纳入知识图形转换为推荐系统。具体来说,我们使用一个知识感知注意传播方式,以获得所述节点表示第一,其捕获用户 - 项目网络和知识图表对全球语义相似度。然后给出一个目标,即用户 - 项对,我们会自动提炼出知识图到基于知识感知关注的具体目标子。随后,通过在应用子有条件的注意力聚集,我们细化知识图,以获得特定目标节点表示。因此,我们可以得到两个表示性和个性化,以实现整体性能。现实世界的数据集实验结果表明,我们对国家的最先进的算法框架的有效性。
translated by 谷歌翻译
这项研究调查了基于知识的问题产生的任务(KBQG)。传统的KBQG的作品从知识图中的FACT三元组中产生了问题,该问题无法表达复杂的操作,例如SPARQL中的聚合和比较。此外,由于大规模SPARQL问题对的昂贵注释,因此需要急切地探索SPARQL的KBQG,因此需要急切地探索SPARQL。最近,由于通常接受自然语言(NL)至NL范式培训的生成预训练的语言模型(PLM)已被证明对低资源生成有效,例如T5和Bart,如何有效地利用它们来生成NL - 非NL SPARQL的问题是具有挑战性的。为了应对这些挑战,提出了AutoQGS是SPARQL低资源KBQG的自动推出方法。首先,我们提出要直接从SPARQL生成问题,以处理KBQG任务以处理复杂的操作。其次,我们提出了一个对大规模无监督数据训练的自动档案,以将SPARQL重新描述为NL描述,从而平滑了从非NL SPARQL到NL问题的低资源转换。 WebQuestionsSP,ComlexWebQuestions 1.1和路径问题的实验结果表明,我们的模型可实现最新的性能,尤其是在低资源设置中。此外,为进一步的KBQG研究生成了330k Factoid复杂问题-SPARQL对的语料库。
translated by 谷歌翻译
具有自然语言用户界面的软件具有越来越重要的重要性。但是,所包含的问题的质量答案(QA)功能仍然没有足够的问题才能正确回答。在我们的工作中,我们通过评估自然语言输入(即,用户的问题)和输出(即,系统的答案)来解决如何改进给定系统的QA质量的研究问题。我们的主要贡献是一种能够识别QA系统提供的错误答案的方法。因此,从答案候选列表中过滤不正确的答案导致高度提高的QA质量。特别是,我们的方法在许多情况下消除了它的潜力,大部分不正确的答案,与系统的未过滤输出相比,显着提高了QA质量。
translated by 谷歌翻译
知识图(KGS)代表作为三元组的事实已被广泛采用在许多应用中。 LIGHT预测和规则感应等推理任务对于KG的开发很重要。已经提出了知识图形嵌入式(KGES)将kg的实体和kg与持续向量空间的关系进行了建议,以获得这些推理任务,并被证明是有效和强大的。但在实际应用中申请和部署KGE的合理性和可行性尚未探索。在本文中,我们讨论并报告我们在真实域应用程序中部署KGE的经验:电子商务。我们首先为电子商务KG系统提供三个重要的探索者:1)注意推理,推理几个目标关系更为关注而不是全部; 2)解释,提供预测的解释,帮助用户和业务运营商理解为什么预测; 3)可转让规则,生成可重用的规则,以加速将千克部署到新系统。虽然非现有KGE可以满足所有这些DesiderATA,但我们提出了一种新颖的一种,可说明的知识图表注意网络,通过建模三元组之间的相关性而不是纯粹依赖于其头实体,关系和尾部实体嵌入来预测。它可以自动选择预测的注意力三倍,并同时记录它们的贡献,从该解释可以很容易地提供,可以有效地生产可转移规则。我们经验表明,我们的方法能够在我们的电子商务应用程序中满足所有三个DesiderATA,并从实际域应用程序中倾斜于数据集的典型基线。
translated by 谷歌翻译
多跳跃知识基础问题答案(KBQA)旨在在知识库中找到答案实体,这是问题中提到的主题实体的几个啤酒花。现有基于检索的方法首先从问题中生成指令,然后使用它们来指导知识图上的多跳推理。由于指令是在整个推理过程中固定的,并且在指令生成中未考虑知识图,因此一旦错误地预测中间实体,模型就无法修改其错误。为了解决这个问题,我们提出了Kbiger(知识库迭代指令生成和推理),这是一种新颖有效的方法,可以在推理图的帮助下动态生成指令。我们没有在推理之前生成所有指令,而是考虑(k-1)推理图来构建k-th指令。通过这种方式,模型可以检查图表的预测并生成新指令,以修改中间实体的不正确预测。我们对两个多跳KBQA基准测试进行实验,并胜过现有方法,并成为新州。进一步的实验表明,我们的方法确实检测到中间实体的不正确预测,并具有修改此类错误的能力。
translated by 谷歌翻译
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector, ignoring the rich information contained in the neighborhood. We propose a method named StarGraph, which gives a novel way to utilize the neighborhood information for large-scale knowledge graphs to obtain entity representations. An incomplete two-hop neighborhood subgraph for each target node is at first generated, then processed by a modified self-attention network to obtain the entity representation, which is used to replace the entity embedding in conventional methods. We achieved SOTA performance on ogbl-wikikg2 and got competitive results on fb15k-237. The experimental results proves that StarGraph is efficient in parameters, and the improvement made on ogbl-wikikg2 demonstrates its great effectiveness of representation learning on large-scale knowledge graphs. The code is now available at \url{https://github.com/hzli-ucas/StarGraph}.
translated by 谷歌翻译