学习知识图的嵌入对人工智能至关重要,可以使各种下游应用受益,例如推荐和问题回答。近年来,已经提出了许多研究努力,以嵌入知识图形。然而,最先前的知识图形嵌入方法忽略不同三元组中的相关实体和实体关系耦合之间的语义相似性,因为它们与评分函数分别优化每个三倍。为了解决这个问题,我们提出了一个简单但有效的对比学习框架,用于知识图形嵌入,可以缩短不同三元组中相关实体和实体关系耦合的语义距离,从而提高知识图形嵌入的表现力。我们在三个标准知识图形基准上评估我们提出的方法。值得注意的是,我们的方法可以产生一些新的最先进的结果,在WN18RR数据集中实现51.2%的MRR,46.8%HITS @ 1,59.1%的MRR,51.8%在YAGO3-10数据集中击打@ 1 。
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
张量分解和基于距离的模型在知识图完成(KGC)中起重要作用。但是,KGC方法中的关系矩阵通常会引起高模型的复杂性,并具有过度拟合的高风险。作为一种补救措施,研究人员提出了各种不同的正规化器,例如张量核定常正规器。我们的动机是基于以下观察,即先前的工作仅着眼于参数空间的“大小”,同时留下隐含的语义信息广泛不受欢迎。为了解决这个问题,我们提出了一个新的正常化程序,即均衡规则器(ER),可以通过利用隐式语义信息来抑制过度拟合。具体而言,ER可以通过使用头部和尾部实体之间的语义模棱两可来增强模型的概括能力。此外,它是基于距离的模型和基于张量分解的模型的通用解决方案。实验结果表明,对最先进的关系预测方法有了明显的重大改进。
translated by 谷歌翻译
Knowledge graph embedding (KGE) aims to learn powerful representations to benefit various artificial intelligence applications, such as question answering and recommendations. Meanwhile, contrastive learning (CL), as an effective mechanism to enhance the discriminative capacity of the learned representations, has been leveraged in different fields, especially graph-based models. However, since the structures of knowledge graphs (KGs) are usually more complicated compared to homogeneous graphs, it is hard to construct appropriate contrastive sample pairs. In this paper, we find that the entities within a symmetrical structure are usually more similar and correlated. This key property can be utilized to construct contrastive positive pairs for contrastive learning. Following the ideas above, we propose a relational symmetrical structure based knowledge graph contrastive learning framework, termed KGE-SymCL, which leverages the symmetrical structure information in KGs to enhance the discriminative ability of KGE models. Concretely, a plug-and-play approach is designed by taking the entities in the relational symmetrical positions as the positive samples. Besides, a self-supervised alignment loss is used to pull together the constructed positive sample pairs for contrastive learning. Extensive experimental results on benchmark datasets have verified the good generalization and superiority of the proposed framework.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
知识嵌入(KE)通过将实体和关系嵌入连续的向量空间来表示知识图(kg)。现有方法主要基于结构或基于描述。基于结构的方法学习保留KGS固有结构的表示。它们不能很好地代表具有有限结构信息的现实世界中的丰富长尾实体。基于描述的方法利用文本信息和语言模型。朝这个方向迈出的先前方法几乎不能胜过基于结构的结构,并且遇到了昂贵的负面抽样和限制性描述需求等问题。在本文中,我们提出了LMKE,该LMKE采用语言模型来得出知识嵌入,旨在既富集了长尾实体的表示形式又旨在解决先前的基于描述的方法的问题。我们通过对比度学习框架制定基于描述的KE学习,以提高培训和评估的效率。实验结果表明,LMKE在链接预测和三重分类的KE基准上实现了最先进的性能,尤其是对于长尾实体。
translated by 谷歌翻译
知识图形嵌入(KGE)由于其在自动知识图(kg)完成和知识驱动的任务中的潜力而引起了很大的关注。然而,最近的KGE模型遭受了高训练成本和大存储空间,因此限制了他们在现实世界应用中的实用性。为了解决这一挑战,根据对比学习领域的最新发现,我们提出了一种名为硬度感知的低维嵌入(HALE)的新型KGE训练框架。除了传统的负面采样而不是传统的负面采样,我们基于查询采样设计一个新的损失功能,可以平衡两个重要的培训目标,对齐和均匀性。此外,我们分析了近期低维双曲模型的硬度感知,并提出了一种轻量级硬度感知激活机制,可以帮助KGE模型关注硬实例并加速收敛。实验结果表明,在有限的训练时间,HALE可以有效地提高KGE模型在五个常用的数据集中的性能和训练速度。在训练后,训练的模型可以在几分钟后获得高预测精度,与低维度和高维条件的最先进模型相比,竞争力。
translated by 谷歌翻译
链路预测是预测知识图的实体之间缺失关系的任务。最近的链路预测工作已经尝试通过在神经网络架构中使用更多层来提供增加链路预测精度的模型。在本文中,我们提出了一种精炼知识图的新方法,从而可以使用相对快速的翻译模型更准确地执行链路预测操作。翻译链接预测模型,如Transe,Transh,Transd,而不是深度学习方法的复杂性较小。我们的方法使用知识图中的关系和实体的层次结构将实体信息作为辅助节点添加到图形中,并将它们连接到包含在其层级中的该信息的节点。我们的实验表明,我们的方法可以显着提高H @ 10的翻译链路预测方法的性能,MRR,MRR。
translated by 谷歌翻译
Covid-19上的知识图(KGS)已建立在加速Covid-19的研究过程中。然而,KGs总是不完整,特别是新建造的Covid-19公斤。链路预测任务旨在预测(e,r,t)或(h,r,e)的丢失实体,其中H和t是某些实体,E是需要预测的实体,R是关系。这项任务还有可能解决Covid-19相关的KGS的不完全问题。虽然已经提出了各种知识图形嵌入(KGE)方法的链路预测任务,但这些现有方法遭受了使用单个评分函数的限制,这不能捕获Covid-19 Kgs的丰富特征。在这项工作中,我们提出了利用多个评分函数来提取来自现有三元组的更多特征的MDistmult模型。我们在CCKS2020 Covid-19抗病毒药物知识图(CADKG)上采用实验。实验结果表明,我们的MDistmult在CADKG数据集上的链路预测任务中实现了最先进的性能
translated by 谷歌翻译
Sparsity of formal knowledge and roughness of non-ontological construction make sparsity problem particularly prominent in Open Knowledge Graphs (OpenKGs). Due to sparse links, learning effective representation for few-shot entities becomes difficult. We hypothesize that by introducing negative samples, a contrastive learning (CL) formulation could be beneficial in such scenarios. However, existing CL methods model KG triplets as binary objects of entities ignoring the relation-guided ternary propagation patterns and they are too generic, i.e., they ignore zero-shot, few-shot and synonymity problems that appear in OpenKGs. To address this, we propose TernaryCL, a CL framework based on ternary propagation patterns among head, relation and tail. TernaryCL designs Contrastive Entity and Contrastive Relation to mine ternary discriminative features with both negative entities and relations, introduces Contrastive Self to help zero- and few-shot entities learn discriminative features, Contrastive Synonym to model synonymous entities, and Contrastive Fusion to aggregate graph features from multiple paths. Extensive experiments on benchmarks demonstrate the superiority of TernaryCL over state-of-the-art models.
translated by 谷歌翻译
最近,链接预测问题,也称为知识图完成,已经吸引了大量的研究。即使最近的型号很少试图通过在低维度中嵌入知识图表来实现相对良好的性能,即目前最先进的模型的最佳结果是以大大提高嵌入的维度的成本赚取的。然而,这导致在巨大知识库的情况下导致过度舒服和更重要的可扩展性问题。灵感灵感来自变压器模型的变体提供的深度学习的进步,因为它的自我关注机制,在本文中,我们提出了一种基于IT的模型来解决上述限制。在我们的模型中,自我关注是将查询依赖预测应用于实体和关系的关键,并捕获它们之间的相互信息,以获得来自低维嵌入的高度富有表现力的表现。两种标准链路预测数据集,FB15K-237和WN18RR的经验结果表明,我们的模型比我们三个最近最近期的最新竞争对手实现了相当的性能或更好的性能,其维度的重大减少了76.3%平均嵌入。
translated by 谷歌翻译
We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.
translated by 谷歌翻译
如今,知识图(KGS)一直在AI相关的应用中发挥关键作用。尽管尺寸大,但现有的公斤远非完全和全面。为了不断丰富KG,通常使用自动知识结构和更新机制,这不可避免地带来充足的噪音。然而,大多数现有知识图形嵌入(KGE)方法假设KGS中的所有三重事实都是正确的,并且在不考虑噪声和知识冲突的情况下将实体和关系投入到低维空间。这将导致kgs的低质量和不可靠的表示。为此,本文提出了一般的多任务加固学习框架,这可以大大缓解嘈杂的数据问题。在我们的框架中,我们利用强化学习来选择高质量的知识三分石,同时过滤出嘈杂的。此外,为了充分利用语义类似的关系之间的相关性,在具有多任务学习的集体方式中训练了类似关系的三重选择过程。此外,我们扩展了流行的KGE Models Transe,Distmult,与所提出的框架耦合和旋转。最后,实验验证表明,我们的方法能够增强现有的KGE模型,可以在嘈杂的情景中提供更强大的KGS表示。
translated by 谷歌翻译
知识图形嵌入研究主要集中在两个最小的规范部门代数,$ \ mathbb {r} $和$ \ mathbb {c} $。最近的结果表明,四元增值嵌入的三线性产品可以是解决链路预测的更有效手段。此外,基于真实嵌入的卷曲的模型通常会产生最先进的链路预测结果。在本文中,我们调查了一种卷积操作的组成,具有超量用乘法。我们提出了四个方法qmult,amult,convic和convo来解决链路预测问题。 Qmult和Omult可以被视为先前最先进方法的四元数和octonion扩展,包括Distmult和复杂。 Convic和Convo在Qmult和Omlult上建立在剩余学习框架的方式中包括卷积操作。我们在七个链路预测数据集中评估了我们的方法,包括WN18RR,FB15K-237和YAGO3-10。实验结果表明,随着知识图的规模和复杂性的增长,学习超复分价值的矢量表示的益处变得更加明显。 Convo优于MRR的FB15K-237上的最先进的方法,命中@ 1并点击@ 3,而Qmult,Omlult,Convic和Convo在所有度量标准中的Yago3-10上的最终倾斜的方式。结果还表明,通过预测平均可以进一步改善链路预测性能。为了培养可重复的研究,我们提供了开源的方法,包括培训和评估脚本以及佩戴型模型。
translated by 谷歌翻译
链路预测在知识图中起着重要作用,这是许多人工智能任务的重要资源,但它通常受不完整的限制。在本文中,我们提出了知识图表BERT for Link预测,名为LP-BERT,其中包含两个培训阶段:多任务预训练和知识图微调。预训练策略不仅使用掩码语言模型(MLM)来学习上下文语料库的知识,还引入掩模实体模型(MEM)和掩模关系模型(MRM),其可以通过预测语义来学习三元组的关系信息基于实体和关系元素。结构化三维关系信息可以转换为非结构化语义信息,可以将其与上下文语料库信息一起集成到培训模型中。在微调阶段,灵感来自对比学习,我们在样本批量中进行三样式的负面取样,这大大增加了负采样的比例,同时保持训练时间几乎不变。此外,我们提出了一种基于Triples的逆关系的数据增强方法,以进一步增加样本分集。我们在WN18RR和UMLS数据集上实现最先进的结果,特别是HITS @ 10指示器从WN18RR数据集上的先前最先进的结果提高了5 \%。
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
知识图(kg)完成是一项重要任务,它极大地使许多领域的知识发现受益(例如生物医学研究)。近年来,学习kg嵌入以执行此任务的嵌入引起了很大的关注。尽管KG嵌入方法成功,但它们主要使用负抽样,从而增加了计算复杂性以及由于封闭的世界假设而引起的偏见预测。为了克服这些局限性,我们提出了\ textbf {kg-nsf},这是一个基于嵌入向量的互相关矩阵学习kg嵌入的无负抽样框架。结果表明,所提出的方法在收敛速度更快的同时,将可比较的链接预测性能与基于阴性采样的方法达到了可比性的预测性能。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译