我们考虑使用个性化的联合学习,除了全球目标外,每个客户还对最大化个性化的本地目标感兴趣。我们认为,在一般连续的动作空间设置下,目标函数属于繁殖的内核希尔伯特空间。我们提出了基于替代高斯工艺(GP)模型的算法,该算法达到了最佳的遗憾顺序(要归结为各种因素)。此外,我们表明,GP模型的稀疏近似显着降低了客户之间的沟通成本。
translated by 谷歌翻译
基于内核的模型,例如内核脊回归和高斯工艺在机器学习应用程序中无处不在,用于回归和优化。众所周知,基于内核的模型的主要缺点是高计算成本。给定$ n $样本的数据集,成本增长为$ \ Mathcal {o}(n^3)$。在某些情况下,现有的稀疏近似方法可以大大降低计算成本,从而有效地将实际成本降低到$ \ natercal {o}(n)$。尽管取得了显着的经验成功,但由于近似值而导致的误差的分析范围的现有结果仍然存在显着差距。在这项工作中,我们为NyStr \“ Om方法和稀疏变分高斯过程近似方法提供新颖的置信区间,我们使用模型的近似(代理)后差解释来建立这些方法。我们的置信区间可改善性能。回归和优化问题的界限。
translated by 谷歌翻译
来自高斯过程(GP)模型的汤普森采样(TS)是一个强大的工具,用于优化黑盒功能。虽然TS享有强烈的理论担保和令人信服的实证性能,但它会引发大量的计算开销,可通过优化预算进行多项式。最近,已经提出了基于稀疏GP模型的可扩展TS方法来增加TS的范围,使其应用​​于足够多模态,嘈杂或组合需要的问题,以便要求解决超过几百个评估。但是,稀疏GPS引入的近似误差使所有现有的后悔界限无效。在这项工作中,我们对可扩展Ts进行了理论和实证分析。我们提供理论担保,并表明可以在标准TS上遗憾地享受可扩展TS的计算复杂性的急剧下降。这些概念索赔是针对合成基准测试的可扩展TS的实际实施,作为现实世界的高通量分子设计任务的一部分。
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
We consider distributed linear bandits where $M$ agents learn collaboratively to minimize the overall cumulative regret incurred by all agents. Information exchange is facilitated by a central server, and both the uplink and downlink communications are carried over channels with fixed capacity, which limits the amount of information that can be transmitted in each use of the channels. We investigate the regret-communication trade-off by (i) establishing information-theoretic lower bounds on the required communications (in terms of bits) for achieving a sublinear regret order; (ii) developing an efficient algorithm that achieves the minimum sublinear regret order offered by centralized learning using the minimum order of communications dictated by the information-theoretic lower bounds. For sparse linear bandits, we show a variant of the proposed algorithm offers better regret-communication trade-off by leveraging the sparsity of the problem.
translated by 谷歌翻译
Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches.
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
我们应对在分布式环境中学习内核上下文匪徒的沟通效率挑战。尽管最近的沟通效率分布式强盗学习取得了进步,但现有的解决方案仅限于简单的模型,例如多臂匪徒和线性匪徒,这阻碍了其实用性。在本文中,我们没有假设存在从功能到预期奖励的线性奖励映射,而是通过让代理商在复制的内核希尔伯特(RKHS)中协作搜索来考虑非线性奖励映射。由于分布式内核学习需要传输原始数据,因此引入了沟通效率的重大挑战,从而导致沟通成本增长线性W.R.T.时间范围$ t $。我们通过装备所有代理通过通用的nystr \“ {o} m嵌入,随着收集更多的数据点的收集。我们严格地证明我们的算法可以以遗憾和通信成本达到次线性率,我们可以通过适应性更新的嵌入来解决这个问题。 。
translated by 谷歌翻译
基于内核的强盗是一个广泛研究的黑盒优化问题,其中假定目标函数生活在已知的繁殖核Hilbert空间中。尽管在嘈杂的环境中建立了几乎最佳的遗憾界限(达到对数因素),但令人惊讶的是,对于无噪声设置(如果可以在没有观察噪声的情况下可以访问基础函数的确切值)时,却少了。我们遗憾地讨论了几个上限。这些似乎都没有最佳秩序,并在最佳遗憾界的顺序上提供了猜想。
translated by 谷歌翻译
在预测功能(假设)中获得可靠的自适应置信度集是顺序决策任务的核心挑战,例如土匪和基于模型的强化学习。这些置信度集合通常依赖于对假设空间的先前假设,例如,繁殖核Hilbert Space(RKHS)的已知核。手动设计此类内核是容易发生的,错误指定可能导致性能差或不安全。在这项工作中,我们建议从离线数据(meta-kel)中进行元学习核。对于未知核是已知碱基核的组合的情况,我们基于结构化的稀疏性开发估计量。在温和的条件下,我们保证我们的估计RKHS会产生有效的置信度集,随着越来越多的离线数据的量,它变得与鉴于真正未知内核的置信度一样紧。我们展示了我们关于内核化强盗问题(又称贝叶斯优化)的方法,我们在其中建立了遗憾的界限,与鉴于真正的内核的人竞争。我们还经验评估方法对贝叶斯优化任务的有效性。
translated by 谷歌翻译
We consider optimizing a function network in the noise-free grey-box setting with RKHS function classes, where the exact intermediate results are observable. We assume that the structure of the network is known (but not the underlying functions comprising it), and we study three types of structures: (1) chain: a cascade of scalar-valued functions, (2) multi-output chain: a cascade of vector-valued functions, and (3) feed-forward network: a fully connected feed-forward network of scalar-valued functions. We propose a sequential upper confidence bound based algorithm GPN-UCB along with a general theoretical upper bound on the cumulative regret. For the Mat\'ern kernel, we additionally propose a non-adaptive sampling based method along with its theoretical upper bound on the simple regret. We also provide algorithm-independent lower bounds on the simple regret and cumulative regret, showing that GPN-UCB is near-optimal for chains and multi-output chains in broad cases of interest.
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
在本文中,我们仅使用部分分布式反馈来研究全球奖励最大化的问题。这个问题是由几个现实世界应用程序(例如蜂窝网络配置,动态定价和政策选择)激发的,其中中央实体采取的行动会影响有助于全球奖励的大量人群。但是,从整个人群那里收集此类奖励反馈不仅会产生高昂的成本,而且经常导致隐私问题。为了解决此问题,我们考虑了差异的私有分布式线性土匪,其中只选择了来自人群的一部分用户(称为客户)来参与学习过程,并且中央服务器通过迭代地汇总这些部分从这种部分反馈中学习了全局模型客户的本地反馈以差异化的方式。然后,我们提出了一个统一的算法学习框架,称为差异性分布式分布式消除(DP-DPE),该框架可以与流行的差异隐私(DP)模型(包括中央DP,Local DP,Local DP和Shuffle DP)自然集成。此外,我们证明DP-DPE既可以达到统一的遗憾,又实现了额定性沟通成本。有趣的是,DP-DPE也可以“免费”获得隐私保护,这是因为由于隐私保证是一个较低的加法术语。此外,作为我们技术的副产品,对于标准的差异私有线性匪徒,也可以实现“自由”隐私的相同结果。最后,我们进行模拟以证实我们的理论结果并证明DP-DPE的有效性。
translated by 谷歌翻译
有效的全球优化是一种广泛使用的方法,用于优化昂贵的黑盒功能,例如调谐参数,设计新材料等。尽管它很受欢迎,但鉴于其广泛使用,较少的关注来分析问题的固有硬度,重要的是要了解有效的全球优化算法的基本限制。在本文中,我们研究了有效的全球优化问题的最严重的复杂性,并且与现有的内核特异性结果相反,我们得出了一个统一的下限,以根据球的度量熵的指标,以实现有效的全局优化的复杂性在相应的繁殖内核希尔伯特空间〜(RKHS)中。具体而言,我们表明,如果存在确定性算法,该算法在$ t $函数评估中实现了任何函数$ f \ in s $ in s $ f \ in $ t $函数评估的次优差距,则有必要至少是$ \ omemega \ left(\ frac {\ log \ mathcal {n}(s(s(\ Mathcal {x})),4 \ epsilon,\ | \ | \ cdot \ cdot \ | _ \ iftty)} {\ log(\ frac {\ frac {r} {r} {\ epsilon {\ epsilon })}} \ right)$,其中$ \ mathcal {n}(\ cdot,\ cdot,\ cdot)$是覆盖号码,$ s $是$ 0 $ $ 0 $,RKHS中的RADIUS $ r $,并且$ s(\ mathcal {x})$是可行套装$ \ mathcal {x} $的$ s $的限制。此外,我们表明,这种下限几乎与常用平方指数核的非自适应搜索算法和具有较大平滑度参数$ \ nu $的垫子\'ern内核所获得的上限匹配,最多可替换为$ $ $ d/2 $ by $ d $和对数项$ \ log \ frac {r} {\ epsilon} $。也就是说,我们的下限对于这些内核几乎是最佳的。
translated by 谷歌翻译
我们将一般的多军匪徒问题视为一个相关(和简单的上下文和不安)元素,是一个放松的控制问题。通过引入熵正则化,我们获得了对值函数的平滑渐近近似。这产生了最佳决策过程的新型半指数近似。该半指数可以被解释为明确平衡探索 - 探索 - 探索权衡取舍,就像乐观的(UCB)原则中,学习溢价明确描述了环境中可用的信息的不对称性和奖励功能中的非线性。所得的渐近随机对照(ARC)算法的性能与其他相关的多臂匪徒的方法相比有利。
translated by 谷歌翻译
贝叶斯优化(BO)已成为黑框函数的顺序优化。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(meta-bo)来利用这些先前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害的不同任务。本文介绍了两种可扩展且可证明的稳健元算法:稳健的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且证明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用程序中都有效,一致地性能,(b)RM-GP-TS,尽管在理论上和实践中都比RM-GP-ucb稳健,但在实践中,在竞争性中表现出色某些方案具有较小的任务,并且在计算上更有效。
translated by 谷歌翻译
我们研究了与中央服务器和多个客户的联合学习多臂强盗设置中最佳手臂识别的问题。每个客户都与多臂强盗相关联,其中每个手臂在具有未知均值和已知方差的高斯分布之后,每个手臂都能产生{\ em I.i.d。} \奖励。假定所有客户的武器集相同。我们定义了两个最佳手臂的概念 - 本地和全球。客户的当地最好的手臂是客户本地手臂中最大的手臂,而全球最佳手臂是所有客户平均平均值最大的手臂。我们假设每个客户只能从当地的手臂上观察奖励,从而估计其当地最好的手臂。客户在上行链路上与中央服务器进行通信,该上行链路需要每个上行链路的使用费用为$ C \ ge0 $单位。在服务器上估算了全球最佳手臂。目的是确定当地最佳武器和全球最佳臂,总成本最少,定义为所有客户的ARM选择总数和总通信成本的总和,但在错误概率上取决于上限。我们提出了一种基于连续消除的新型算法{\ sc fedelim},仅在指数时间步骤中进行通信,并获得高概率依赖性实例依赖性上限,以其总成本。我们论文的关键要点是,对于任何$ c \ geq 0 $,错误概率和错误概率足够小,{\ sc fedelim}下的ARM选择总数(分别为\ the总费用)最多为〜$ 2 $(reves 。〜 $ 3 $)乘以其在每个时间步骤中通信的变体下的ARM选择总数的最大总数。此外,我们证明后者在期望最高的恒定因素方面是最佳的,从而证明{\ sc fedelim}中的通信几乎是无成本的。我们从数值验证{\ sc fedelim}的功效。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译
我们认为在情节环境中的强化学习(RL)中的遗憾最小化问题。在许多实际的RL环境中,状态和动作空间是连续的或非常大的。现有方法通过随机过渡模型的低维表示或$ q $ functions的近似值来确定遗憾的保证。但是,对国家价值函数的函数近似方案的理解基本上仍然缺失。在本文中,我们提出了一种基于在线模型的RL算法,即CME-RL,该算法将过渡分布的表示形式学习为嵌入在复制的内核希尔伯特领域中的嵌入,同时仔细平衡了利用探索 - 探索权衡取舍。我们通过证明频繁的(最糟糕的)遗憾结束了$ \ tilde {o} \ big(h \ gamma_n \ sqrt {n} \ big)$ \ footnote {$ footnote {$ tilde {$ o}(\ cdot)$仅隐藏绝对常数和poly-logarithmic因素。},其中$ h $是情节长度,$ n $是时间步长的总数,$ \ gamma_n $是信息理论数量国家行动特征空间的有效维度。我们的方法绕过了估计过渡概率的需求,并适用于可以定义内核的任何域。它还为内核方法的一般理论带来了新的见解,以进行近似推断和RL遗憾的最小化。
translated by 谷歌翻译