罕见的事件搜索使我们能够通过利用专门的大型探测器来搜索无法与其他方式无法访问的新物理学。机器学习提供了一种新工具来最大化这些检测器提供的信息。信息很少,这迫使这些算法从最低级别的数据开始,并利用检测器中的所有对称性来产生结果。在这项工作中,我们提出了Kamnet,该Kamnet在几何深度学习和时空数据分析中实现了突破,以最大程度地提高Kamland-Zen的物理范围,Kamland-Zen是kiloton量表球形液体闪烁体检测器,以寻找中微子的中微子双β衰减($ 0 \ beta \ beta \ beta \ beta $) 。使用Kamland的简化背景模型,我们表明Kamnet在基准MC模拟上以较高的鲁棒性水平优于常规CNN。然后,我们使用模拟数据,证明了Kamnet将Kamland-Zen的敏感性提高到$ 0 \ nu \ beta \ beta \ beta $和$ 0 \ nu \ beta \ beta \ beta $的能力。这项工作的一个关键组成部分是增加了注意机制来阐明基础物理Kamnet用于背景排斥。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
由液体闪光灯(LS)靶标组成的大型探测器被一系列照片 - 型型管(PMT)包围,广泛用于现代中微子实验中:Borexino,Kamland,Daya Bay,Double Chooz,Reno,Ren​​o,Ren​​o和即将到来的Juno及其卫星朱诺检测器陶。这样的设备能够测量中微子能量,这可以从PMT通道上的光及其空间和时间分布中得出。但是,在大规模探测器中实现精细的能源分辨率是具有挑战性的。在这项工作中,我们介绍了该类型最先进的检测器Juno的能源重建方法的机器学习方法。我们专注于0-10 MEV的能量范围的正电子事件,该事件与juno $ - $中微子中的主要信号相对应,该信号源自核反应堆核心,并通过逆β-蛋白通道检测到。我们考虑使用PMTS收集的信息计算的综合特征,并在综合特征上进行了培训的深层神经网络。我们描述了我们功能工程程序的详细信息,并表明机器学习模型可以使用工程功能的子集提供能源分辨率$ \ sigma = 3 \%$。用于模型培训和测试的数据集由Monte Carlo方法与官方Juno软件生成。还提出了用于评估实际数据重建算法性能的校准源。
translated by 谷歌翻译
机器学习在加强和加速寻求新基本物理学方面发挥着至关重要的作用。我们审查了新物理学的机器学习方法和应用中,在地面高能量物理实验的背景下,包括大型强子撞机,罕见的事件搜索和中微生实验。虽然机器学习在这些领域拥有悠久的历史,但深入学习革命(2010年代初)就研究的范围和雄心而产生了定性转变。这些现代化的机器学习发展是本综述的重点。
translated by 谷歌翻译
在背景主导的情况下,通过机器学习和信号和背景之间的可观察者之间的高度重叠来调查LHC在LHC的新物理搜索的敏感性。我们使用两种不同的型号,XGBoost和深度神经网络,利用可观察到之间的相关性,并将这种方法与传统的切割方法进行比较。我们认为不同的方法来分析模型的输出,发现模板拟合通常比简单的切割更好地执行。通过福芙氏分解,我们可以额外了解事件运动学与机器学习模型输出之间的关系。我们认为具有亚霉素的超对称场景作为一个具体示例,但方法可以应用于更广泛的超对称模型。
translated by 谷歌翻译
粒子识别实验质量的基本度量是其统计能力以区分信号和背景。在使用闪烁体检测器的许多核,高能和罕见的搜索实验中,脉冲形状歧视(PSD)是用于此目的的基本方法。传统技术利用信号和背景事件的脉冲衰减时间之间的差异或由不同类型的辐射量子引起的脉冲信号以实现良好的歧视。但是,只有当总的光发射足以获得适当的脉冲轮廓时,这种技术才有效。仅当由于检测器中的入射粒子而引起明显的后坐力时,才有可能。但是,罕见的事实搜索实验(例如中微子或深色可能的直接搜索实验)并不总是满足这些条件。因此,必须拥有一种可以在这些情况下提供非常有效歧视的方法。基于神经网络的机器学习算法已用于许多物理学领域,尤其是在高能实验中的分类问题,并且与传统技术相比,结果更好。我们介绍了我们对两种基于网络方法的研究的结果。密集的神经网络和复发性神经网络,用于脉冲形状歧视,并将其与常规方法相同。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
In this article, we use artificial intelligence algorithms to show how to enhance the resolution of the elementary particle track fitting in inhomogeneous dense detectors, such as plastic scintillators. We use deep learning to replace more traditional Bayesian filtering methods, drastically improving the reconstruction of the interacting particle kinematics. We show that a specific form of neural network, inherited from the field of natural language processing, is very close to the concept of a Bayesian filter that adopts a hyper-informative prior. Such a paradigm change can influence the design of future particle physics experiments and their data exploitation.
translated by 谷歌翻译
我们介绍了第一个机器学习引力波搜索模拟数据挑战(MLGWSC-1)的结果。在这一挑战中,参与的小组必须从二进制黑洞合并中识别出复杂性和持续时间逐渐嵌入在逐渐更现实的噪声中的引力波信号。 4个提供的数据集中的决赛包含O3A观察的真实噪声,并发出了20秒的持续时间,其中包含进动效应和高阶模式。我们介绍了在提交前从参与者未知的1个月的测试数据中得出的6个输入算法的平均灵敏度距离和运行时。其中4个是机器学习算法。我们发现,最好的基于机器学习的算法能够以每月1个的错误警报率(FAR)的速度(FAR)实现基于匹配过滤的生产分析的敏感距离的95%。相反,对于真实的噪音,领先的机器学习搜索获得了70%。为了更高的范围,敏感距离缩小的差异缩小到某些数据集上选择机器学习提交的范围$ \ geq 200 $以优于传统搜索算法的程度。我们的结果表明,当前的机器学习搜索算法可能已经在有限的参数区域中对某些生产设置有用。为了改善最新的技术,机器学习算法需要降低他们能够检测信号并将其有效性扩展到参数空间区域的虚假警报率,在这些区域中,建模的搜索在计算上很昂贵。根据我们的发现,我们汇编了我们认为,将机器学习搜索提升到重力波信号检测中的宝贵工具,我们认为这是最重要的研究领域。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
我们使用神经网络研究几种简化的暗物质(DM)模型及其在LHC的签名。我们专注于通常的单声角加上缺失的横向能量通道,但要训练算法我们在2D直方图中组织数据而不是逐个事件阵列。这导致较大的性能提升,以区分标准模型(SM)和SM以及新物理信号。我们使用KineMatic单速仪功能作为输入数据,允许我们描述具有单个数据示例的模型的系列。我们发现神经网络性能不依赖于模拟的后台事件数量,如果它们作为$ s / \ sqrt {b} $函数呈现,其中$ s $和$ b $是信号和背景的数量每直方图的事件分别。这提供了对方法的灵活性,因为在这种情况下测试特定模型只需要了解新物理单次横截面。此外,我们还在关于真实DM性质的错误假设下讨论网络性能。最后,我们提出了多模型分类器以更普遍的方式搜索和识别新信号,对于下一个LHC运行。
translated by 谷歌翻译
大型强子撞机的不稳定沉重粒子的创造是解决物理学中最深处的最深处的最直接方式。碰撞通常产生可变尺寸的观察粒子,其具有固有的歧义,使观察到的颗粒的分配复杂于重质颗粒的腐烂产物。在物理界解决这些挑战的当前策略忽略了腐烂产品的物理对称,并考虑所有可能的分配排列,并不扩展到复杂的配置。基于注意的序列建模的深度学习方法在自然语言处理中取得了最先进的性能,但它们缺乏内置机制来处理物理集分配问题中发现的独特对称性。我们介绍了一种建构对称保护的新方法,用于保护对称保护的网络,反映问题的自然侵略者,以有效地找到任务而不评估所有排列。这种通用方法适用于任意复杂的配置,并且显着优于当前方法,提高了在典型的基准问题上的19 \%-35 \%之间的重建效率,同时在最复杂的事件上将推理时间减少两到五个数量级,使得许多重要和以前顽固的病例易腐烂。包含常规库的完整代码存储库,使用的特定配置和完整的数据集发布,是在https://github.com/alexanders101/spanet的avawaiable
translated by 谷歌翻译
迄今为止,引力波发现的所有科学主张都依赖于候选观测值的离线统计分析,以量化相对于背景过程的重要性。 Ligo实验中这种离线检测管道中的当前基础是匹配的滤波器算法,该算法产生了基于信噪比的基于信噪比的统计量,用于对候选观测进行排名。现有的基于深度学习的尝试检测引力波,这些尝试在信号灵敏度和计算效率(计算效率)中都表现出了输出概率分数。但是,概率分数不容易集成到发现工作流程中,从而将深度学习的使用限制为迄今为止的非发现的应用程序。在本文中,引入了深度学习信噪比(DEEPSNR)检测管道,该检测管道使用了一种新方法来从深度学习分类器中生成信噪比排名统计量,从而为使用提供了第一个使用的基础在面向发现的管道中的深度学习算法。通过从第一次观察运行中识别二进制黑洞合并候选者与噪声源相对于噪声源来证明DeepSNR的性能。使用Ligo检测器响应的高保真模拟用于在物理观察物方面介绍深度学习模型的第一个灵敏度估计。还研究了在各种实验方面的DeepSNR的鲁棒性。结果为DeepSNR用于在更广泛的背景下的引力波和罕见信号的科学发现铺平了道路,从而有可能检测到昏迷的信号和从未被观察到的现象。
translated by 谷歌翻译
在具有低温粒子检测器的高背景或校准测量中,由于反冲事件的堆积而导致暴露的大量份额损失。我们提出了一种用LSTM神经网络分离堆积事件的方法,并在示例性数据集上评估其性能。尽管有非线性探测器响应函数,我们可以合理地重建严重扭曲的能谱的基础事实。
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
我们使用深度学习介绍了一种用于识别超高能量宇宙射线的大规模组成的新方法。该方法的关键思想是使用两个神经网络的链。第一网络预测各个事件的主要粒子的类型,而第二个是次数的群体组成。我们将此方法应用于望远镜阵列表面检测器读数的Monte-Carlo数据,在此,其产生的4%近似的前所未有的低误差为7%。统计误差显示到系统的一个与用于模拟的幂声相互作用模型的选择相关的系统。
translated by 谷歌翻译
基于空间的重力波(GW)检测器将能够观察到来自当前基于地面检测的来源几乎不可能的信号。因此,建立的信号检测方法(匹配的过滤)将需要一个复杂的模板库,从而导致计算成本在实践中过于昂贵。在这里,我们为所有空间GW来源开发了高准确的GW信号检测和提取方法。作为概念的证明,我们表明,科学驱动和统一的多阶段深神经网络可以识别出浸入高斯噪声中的合成信号。与目标信号相比,我们的方法具有超过99%的信号检测准确性,同时获得至少95%的相似性。我们进一步证明了几种扩展场景的解释性和强烈的概括行为。
translated by 谷歌翻译