最近,学到的图像压缩方法优于传统手工制作的方法,包括BPG。该成功的关键之一是学习的熵模型,该模型估计了量化潜在表示的概率分布。与其他视觉任务一样,最近学习的熵模型基于卷积神经网络(CNN)。但是,CNN由于局部连接性的性质而在建模长期依赖性方面有限制,这在图像压缩中可能是一个重要的瓶颈,其中降低空间冗余是一个关键点。为了克服这个问题,我们提出了一个名为Informand Transformer(Informer)的新型熵模型,该模型使用注意机制以内容依赖性方式利用全球和局部信息。我们的实验表明,告密者可以提高利率 - 对柯达和Tecnick数据集的最先进方法的延伸性能,而没有二次计算复杂性问题。我们的源代码可在https://github.com/naver-ai/informer上获得。
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译
熵建模是高性能图像压缩算法的关键组件。自回旋上下文建模的最新发展有助于基于学习的方法超越了经典的方法。但是,由于潜在空间中的空间通道依赖性以及上下文适应性的次优实现,这些模型的性能可以进一步提高。受到变压器的自适应特性的启发,我们提出了一个基于变压器的上下文模型,名为ContextFormer,该模型将事实上的标准注意机制推广到时空通道的注意力。我们用上下文形式替换了现代压缩框架的上下文模型,并在广泛使用的柯达,Clic2020和Tecnick Image数据集上进行测试。我们的实验结果表明,与标准多功能视频编码(VVC)测试模型(VTM)16.2相比,提出的模型可节省多达11%的利率,并且在PSNR和MS-SSIM方面优于各种基于学习的模型。
translated by 谷歌翻译
Recent models for learned image compression are based on autoencoders, learning approximately invertible mappings from pixels to a quantized latent representation. These are combined with an entropy model, a prior on the latent representation that can be used with standard arithmetic coding algorithms to yield a compressed bitstream. Recently, hierarchical entropy models have been introduced as a way to exploit more structure in the latents than simple fully factorized priors, improving compression performance while maintaining end-to-end optimization. Inspired by the success of autoregressive priors in probabilistic generative models, we examine autoregressive, hierarchical, as well as combined priors as alternatives, weighing their costs and benefits in the context of image compression. While it is well known that autoregressive models come with a significant computational penalty, we find that in terms of compression performance, autoregressive and hierarchical priors are complementary and, together, exploit the probabilistic structure in the latents better than all previous learned models. The combined model yields state-of-the-art rate-distortion performance, providing a 15.8% average reduction in file size over the previous state-of-the-art method based on deep learning, which corresponds to a 59.8% size reduction over JPEG, more than 35% reduction compared to WebP and JPEG2000, and bitstreams 8.4% smaller than BPG, the current state-of-the-art image codec. To the best of our knowledge, our model is the first learning-based method to outperform BPG on both PSNR and MS-SSIM distortion metrics.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
Image compression is a fundamental research field and many well-known compression standards have been developed for many decades. Recently, learned compression methods exhibit a fast development trend with promising results. However, there is still a performance gap between learned compression algorithms and reigning compression standards, especially in terms of widely used PSNR metric. In this paper, we explore the remaining redundancy of recent learned compression algorithms. We have found accurate entropy models for rate estimation largely affect the optimization of network parameters and thus affect the rate-distortion performance. Therefore, in this paper, we propose to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model. Besides, we take advantage of recent attention modules and incorporate them into network architecture to enhance the performance. Experimental results demonstrate our proposed method achieves a state-of-the-art performance compared to existing learned compression methods on both Kodak and high-resolution datasets. To our knowledge our approach is the first work to achieve comparable performance with latest compression standard Versatile Video Coding (VVC) regarding PSNR. More importantly, our approach generates more visually pleasant results when optimized by MS-SSIM. The project page is at https://github.com/ZhengxueCheng/ Learned-Image-Compression-with-GMM-and-Attention.
translated by 谷歌翻译
In recent years, neural image compression (NIC) algorithms have shown powerful coding performance. However, most of them are not adaptive to the image content. Although several content adaptive methods have been proposed by updating the encoder-side components, the adaptability of both latents and the decoder is not well exploited. In this work, we propose a new NIC framework that improves the content adaptability on both latents and the decoder. Specifically, to remove redundancy in the latents, our content adaptive channel dropping (CACD) method automatically selects the optimal quality levels for the latents spatially and drops the redundant channels. Additionally, we propose the content adaptive feature transformation (CAFT) method to improve decoder-side content adaptability by extracting the characteristic information of the image content, which is then used to transform the features in the decoder side. Experimental results demonstrate that our proposed methods with the encoder-side updating algorithm achieve the state-of-the-art performance.
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
最近,基于深度学习的图像压缩已取得了显着的进步,并且在主观度量和更具挑战性的客观指标中,与最新的传统方法H.266/vvc相比,取得了更好的评分(R-D)性能。但是,一个主要问题是,许多领先的学识渊博的方案无法保持绩效和复杂性之间的良好权衡。在本文中,我们提出了一个效率和有效的图像编码框架,该框架的复杂性比最高的状态具有相似的R-D性能。首先,我们开发了改进的多尺度残差块(MSRB),该块可以扩展容纳长石,并且更容易获得全球信息。它可以进一步捕获和减少潜在表示的空间相关性。其次,引入了更高级的重要性图网络,以自适应地分配位置到图像的不同区域。第三,我们应用2D定量后flter(PQF)来减少视频编码中样本自适应偏移量(SAO)flter的动机。此外,我们认为编码器和解码器的复杂性对图像压缩性能有不同的影响。基于这一观察结果,我们设计了一个不对称范式,其中编码器采用三个阶段的MSRB来提高学习能力,而解码器只需要一个srb的一个阶段就可以产生令人满意的重建,从而在不牺牲性能的情况下降低了解码的复杂性。实验结果表明,与最先进的方法相比,所提出方法的编码和解码时间速度约为17倍,而R-D性能仅在Kodak和Tecnick数据集中降低了1%,而R-D性能仅少于1%。它仍然比H.266/VVC(4:4:4)和其他基于学习的方法更好。我们的源代码可在https://github.com/fengyurenpingsheng上公开获得。
translated by 谷歌翻译
在本文中,我们提出了一类新的高效的深源通道编码方法,可以在非线性变换下的源分布下,可以在名称非线性变换源通道编码(NTSCC)下收集。在所考虑的模型中,发射器首先了解非线性分析变换以将源数据映射到潜伏空间中,然后通过深关节源通道编码将潜在的表示发送到接收器。我们的模型在有效提取源语义特征并提供源通道编码的侧面信息之前,我们的模型包括强度。与现有的传统深度联合源通道编码方法不同,所提出的NTSCC基本上学习源潜像和熵模型,作为先前的潜在表示。因此,开发了新的自适应速率传输和高辅助辅助编解码器改进机制以升级深关节源通道编码。整个系统设计被制定为优化问题,其目标是最小化建立感知质量指标下的端到端传输率失真性能。在简单的示例源和测试图像源上,我们发现所提出的NTSCC传输方法通常优于使用标准的深关节源通道编码和基于经典分离的数字传输的模拟传输。值得注意的是,由于其剧烈的内容感知能力,所提出的NTSCC方法可能会支持未来的语义通信。
translated by 谷歌翻译
开发了一种基于变换器的图像压缩(TIC)方法,其重用了具有配对主和超编码器解码器的规范变形AutoEncoder(VAE)架构。主要和超编码器包括一系列神经转换单元(NTU),以分析和聚合重要信息以进行更紧凑的输入图像表示,而解码器镜像编码器侧操作以生成从压缩的像素域图像重建。比特流。每个NTU由Swin变压器块(STB)和卷积层(CONV)组成,以最佳地嵌入远程和短程信息;同时,设计了一种休闲的注意模块(CAM),用于潜在特征的自适应上下文建模,以利用超自行性前提。具有最先进的方法的TIC竞争对手,包括基于深度卷积神经网络(CNNS)的学习图像编码(LIC)方法以及最近批准的多功能视频编码(VVC)标准的基于规则的基于规则的简介,并且需要很多较少的模型参数,例如,降低前导性能LIC减少45%。
translated by 谷歌翻译
We describe an end-to-end trainable model for image compression based on variational autoencoders. The model incorporates a hyperprior to effectively capture spatial dependencies in the latent representation. This hyperprior relates to side information, a concept universal to virtually all modern image codecs, but largely unexplored in image compression using artificial neural networks (ANNs). Unlike existing autoencoder compression methods, our model trains a complex prior jointly with the underlying autoencoder. We demonstrate that this model leads to state-of-the-art image compression when measuring visual quality using the popular MS-SSIM index, and yields rate-distortion performance surpassing published ANN-based methods when evaluated using a more traditional metric based on squared error (PSNR). Furthermore, we provide a qualitative comparison of models trained for different distortion metrics.
translated by 谷歌翻译
对于许多技术领域的专业用户,例如医学,遥感,精密工程和科学研究,无损和近乎无情的图像压缩至关重要。但是,尽管在基于学习的图像压缩方面的研究兴趣迅速增长,但没有发表的方法提供无损和近乎无情的模式。在本文中,我们提出了一个统一而强大的深层损失加上残留(DLPR)编码框架,以实现无损和近乎无情的图像压缩。在无损模式下,DLPR编码系统首先执行有损压缩,然后执行残差的无损编码。我们在VAE的方法中解决了关节损失和残留压缩问题,并添加残差的自回归上下文模型以增强无损压缩性能。在近乎荒谬的模式下,我们量化了原始残差以满足给定的$ \ ell_ \ infty $错误绑定,并提出了可扩展的近乎无情的压缩方案,该方案适用于可变$ \ ell_ \ infty $ bunds而不是训练多个网络。为了加快DLPR编码,我们通过新颖的编码环境设计提高了算法并行化的程度,并以自适应残留间隔加速熵编码。实验结果表明,DLPR编码系统以竞争性的编码速度实现了最先进的无损和近乎无效的图像压缩性能。
translated by 谷歌翻译
对于神经视频编解码器,设计有效的熵模型至关重要但又具有挑战性,该模型可以准确预测量化潜在表示的概率分布。但是,大多数现有的视频编解码器直接使用图像编解码器的现成的熵模型来编码残差或运动,并且不会完全利用视频中的时空特性。为此,本文提出了一个强大的熵模型,该模型有效地捕获了空间和时间依赖性。特别是,我们介绍了潜在的先验,这些先验利用了潜在表示之间的相关性来挤压时间冗余。同时,提出了双重空间先验,以平行友好的方式降低空间冗余。此外,我们的熵模型也是通用的。除了估计概率分布外,我们的熵模型还在空间通道上生成量化步骤。这种内容自适应的量化机制不仅有助于我们的编解码器在单个模型中实现平滑的速率调整,而且还通过动态位分配来改善最终速率延伸性能。实验结果表明,与H.266(VTM)相比,使用最高的压缩率配置,我们的神经编解码器在提出的熵模型中,我们的神经编解码器可以在UVG数据集上节省18.2%的比特率。它在神经视频编解码器的开发中是一个新的里程碑。这些代码在https://github.com/microsoft/dcvc上。
translated by 谷歌翻译
我们提出了一种新型的深神经网络(DNN)体系结构,以在仅在解码器侧作为侧面信息可用时,以压缩图像,这是一个著名且经过深入研究的分布式源编码(DSC)问题的特殊情况。特别是,我们考虑了一对立体声图像,它们具有重叠的视野,由同步和校准的摄像机捕获。因此,高度相关。我们假设该对的一个图像要被压缩和传输,而另一个图像仅在解码器上可用。在提出的体系结构中,编码器使用DNN将输入图像映射到潜在空间,量化潜在表示,并使用熵编码无损地压缩了它。所提出的解码器提取了仅从可用侧面信息的图像之间的有用信息,以及侧面信息的潜在表示。然后,这两个图像的潜在表示,一个是从编码器中接收的,另一个从本地提取,以及本地生成的共同信息,将其馈送到两个图像的各个解码器中。我们采用交叉意见模块(CAM)来对齐两个图像的各个解码器的中间层中获得的特征图,从而可以更好地利用侧面信息。我们训练并演示了拟议算法对各种现实设置的有效性,例如立体声图像对的Kitti和CityScape数据集。我们的结果表明,所提出的体系结构能够以更有效的方式利用仅解码器的侧面信息,因为它表现优于先前的工作。我们还表明,即使在未校准和未同步的相机阵列用例的情况下,提出的方法也能够提供显着的收益。
translated by 谷歌翻译
Recently, many neural network-based image compression methods have shown promising results superior to the existing tool-based conventional codecs. However, most of them are often trained as separate models for different target bit rates, thus increasing the model complexity. Therefore, several studies have been conducted for learned compression that supports variable rates with single models, but they require additional network modules, layers, or inputs that often lead to complexity overhead, or do not provide sufficient coding efficiency. In this paper, we firstly propose a selective compression method that partially encodes the latent representations in a fully generalized manner for deep learning-based variable-rate image compression. The proposed method adaptively determines essential representation elements for compression of different target quality levels. For this, we first generate a 3D importance map as the nature of input content to represent the underlying importance of the representation elements. The 3D importance map is then adjusted for different target quality levels using importance adjustment curves. The adjusted 3D importance map is finally converted into a 3D binary mask to determine the essential representation elements for compression. The proposed method can be easily integrated with the existing compression models with a negligible amount of overhead increase. Our method can also enable continuously variable-rate compression via simple interpolation of the importance adjustment curves among different quality levels. The extensive experimental results show that the proposed method can achieve comparable compression efficiency as those of the separately trained reference compression models and can reduce decoding time owing to the selective compression. The sample codes are publicly available at https://github.com/JooyoungLeeETRI/SCR.
translated by 谷歌翻译
我们展示了如何使用变压器来大大简化神经视频压缩。以前的方法一直依赖越来越多的建筑偏见和先进的方法,包括运动预测和翘曲操作,从而产生复杂的模型。取而代之的是,我们独立地将输入帧映射到表示形式,并使用变压器对其依赖性进行建模,让它预测给定过去的未来表示的分布。最终的视频压缩变压器优于标准视频压缩数据集上的先前方法。合成数据的实验表明,我们的模型学会了处理复杂的运动模式,例如纯粹从数据中模糊和褪色。我们的方法易于实施,我们发布代码以促进未来的研究。
translated by 谷歌翻译
我们提出了一种用于在仅在解码器处作为侧面信息可用时压缩图像的新型神经网络(DNN)架构。该问题在信息理论中称为分布式源编码(DSC)。特别地,我们考虑一对立体图像,其由于视野的重叠场而通常彼此具有高相关,并且假设要压缩和发送该对的一个图像,而另一个图像仅在解码器。在所提出的架构中,编码器将输入图像映射到潜像,量化潜在表示,并使用熵编码压缩它。训练解码器以仅使用后者使用后者提取输入图像和相关图像之间的公共信息。接收的潜在表示和本地生成的公共信息通过解码器网络来获得增强的输入图像的增强重建。公共信息提供了ReceIver上相关信息的简洁表示。我们训练并展示所提出的方法对立体声图像对的拟议方法的有效性。我们的结果表明,该建筑的架构能够利用仅解码器的侧面信息,并且在使用解码器侧信息的情况下优于立体图像压缩的先前工作。
translated by 谷歌翻译
随着深度学习技术的发展,深度学习与图像压缩的结合引起了很多关注。最近,学到的图像压缩方法在速率绩效方面超出了其经典对应物。但是,连续的速率适应仍然是一个悬而未决的问题。一些学到的图像压缩方法将多个网络用于多个速率,而另一些则使用一个模型,而牺牲了计算复杂性的增加和性能降解。在本文中,我们提出了一个不断的可调节率的学术图像压缩框架,不对称获得了变异自动编码器(AG-VAE)。 AG-VAE利用一对增益单元在一个单个模型中实现离散率适应,并具有可忽略的附加计算。然后,通过使用指数插值,可以在不损害性能的情况下实现连续速率适应。此外,我们提出了不对称的高斯熵模型,以进行更准确的熵估计。详尽的实验表明,与经典图像编解码器相比,我们的方法通过SOTA学习的图像压缩方法获得了可比的定量性能,并且定性性能更好。在消融研究中,我们证实了增益单元和不对称高斯熵模型的有用性和优势。
translated by 谷歌翻译
学识渊博的视频压缩方法已经对视频编码社区产生了各种兴趣,因为它们已经匹配甚至超过传统视频编解码器的速度差异(RD)性能。但是,许多当前基于学习的方法致力于利用短期时间信息,从而限制其性能。在本文中,我们专注于利用视频内容的独特特征,并进一步探索时间信息以增强压缩性能。具体而言,对于远程时间信息开发,我们提出了时间验证,可以在推理过程中在图片组(GOP)中连续更新。在这种情况下,时间先验包含当前共和党中所有解码图像的宝贵时间信息。至于短期时间信息,我们提出了逐步的指导运动补偿,以实现强大而有效的补偿。详细说明,我们设计了一个层次结构,以实现多尺度的补偿。更重要的是,我们使用光流引导来生成每个尺度特征图之间的像素偏移,每个尺度下的补偿结果将用于指导以下规模的补偿。足够的实验结果表明,与最先进的视频压缩方法相比,我们的方法可以获得更好的RD性能。该代码可公开可用:https://github.com/huairui/lstvc。
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译