我们提出了一种基于深度多实例学习的简单高效的图像分类架构,并将其应用于牙科射线照片中龋齿检测的具有挑战性的任务。从技术上讲,我们的方法有两种方式贡献:首先,尽管使用弱图像级标签培训,它尽管培训了本地补丁分类概率的热线图。其次,它可以从分段标签学习,从而指导培训。与现有方法相比,人类用户可以忠实地解释预测并与模型进行交互以决定参加哪些区域。实验是在$ \ SIM $ 38K Bitewings($ \ SIM $ 316K牙齿)的大型临床数据集上进行的,在那里我们与各种基线相比实现了竞争性能。当由外部龋齿分割模型引导时,观察到分类和定位性能的显着改善。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code and model will be available at https://github.com/sbasu276/RadFormer
translated by 谷歌翻译
由于深度学习在放射学领域被广泛使用,因此在使用模型进行诊断时,这种模型的解释性越来越成为获得临床医生的信任至关重要的。在这项研究中,使用U-NET架构进行了三个实验集,以改善分类性能,同时通过在训练过程中结合热图生成器来增强与模型相对应的热图。所有实验均使用包含胸部X光片的数据集,来自三个条件之一(“正常”,“充血性心力衰竭(CHF)”和“肺炎”)的相关标签,以及有关放射科医师眼神坐标的数值信息在图像上。引入该数据集的论文(A. Karargyris和Moradi,2021年)开发了一个U-NET模型,该模型被视为这项研究的基线模型,以显示如何将眼目光数据用于多模式培训中的眼睛凝视数据以进行多模式培训以进行多模式训练。解释性改进。为了比较分类性能,测量了接收器操作特征曲线(AUC)下面积的95%置信区间(CI)。最佳方法的AUC为0.913(CI:0.860-0.966)。最大的改进是“肺炎”和“ CHF”类别,基线模型最努力地进行分类,导致AUCS 0.859(CI:0.732-0.957)和0.962(CI:0.933-0.989)。所提出的方法的解码器还能够产生概率掩模,以突出模型分类中确定的图像部分,类似于放射科医生的眼睛凝视数据。因此,这项工作表明,将热图发生器和眼睛凝视信息纳入训练可以同时改善疾病分类,并提供可解释的视觉效果,与放射线医生在进行诊断时如何看待胸部X光片。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
在过去的十年中,使用深度学习方法从胸部X光片检测到胸部X光片是一个活跃的研究领域。大多数以前的方法试图通过识别负责对模型预测的重要贡献的空间区域来关注图像的患病器官。相比之下,专家放射科医生在确定这些区域是否异常之前首先找到突出的解剖结构。因此,将解剖学知识纳入深度学习模型可能会带来自动疾病分类的大幅改善。在此激励的情况下,我们提出了解剖学XNET,这是一种基于解剖学注意的胸腔疾病分类网络,该网络优先考虑由预识别的解剖区域引导的空间特征。我们通过利用可用的小规模器官级注释来采用半监督的学习方法,将解剖区域定位在没有器官级注释的大规模数据集中。拟议的解剖学XNET使用预先训练的Densenet-121作为骨干网络,具有两个相应的结构化模块,解剖学意识到($^3 $)和概率加权平均池(PWAP),在凝聚力框架中引起解剖学的关注学习。我们通过实验表明,我们提出的方法通过在三个公开可用的大规模CXR数据集中获得85.78%,92.07%和84.04%的AUC得分来设置新的最先进基准测试。和模拟CXR。这不仅证明了利用解剖学分割知识来改善胸病疾病分类的功效,而且还证明了所提出的框架的普遍性。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
快捷方式学习对深度学习模型很常见,但导致了退化的特征表示形式,因此危害了该模型的可推广性和解释性。但是,在广泛使用的视觉变压器框架中的快捷方式学习在很大程度上是未知的。同时,引入特定领域的知识是纠正捷径的主要方法,捷径为背景相关因素。例如,在医学成像领域中,放射科医生的眼睛凝视数据是一种有效的人类视觉先验知识,具有指导深度学习模型的巨大潜力,可以专注于有意义的前景区域。但是,获得眼睛凝视数据是时必的,劳动密集型的,有时甚至是不切实际的。在这项工作中,我们提出了一种新颖而有效的显着性视觉变压器(SGT)模型,以在没有眼神数据的情况下在VIT中纠正快捷方式学习。具体而言,采用计算视觉显着性模型来预测输入图像样本的显着性图。然后,显着图用于散布最有用的图像贴片。在拟议的中士中,图像贴片之间的自我注意力仅集中于蒸馏的信息。考虑到这种蒸馏操作可能会导致全局信息丢失,我们在最后一个编码器层中进一步介绍了一个残留的连接,该连接捕获了所有图像贴片中的自我注意力。四个独立公共数据集的实验结果表明,我们的SGT框架可以有效地学习和利用人类的先验知识,而无需眼睛凝视数据,并且比基线更好。同时,它成功地纠正了有害的快捷方式学习并显着提高了VIT模型的解释性,证明了传递人类先验知识在纠正快捷方式学习方面传递人类先验知识的承诺
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
深度学习的显着成功引起了人们对医学成像诊断的应用的兴趣。尽管最新的深度学习模型在分类不同类型的医学数据方面已经达到了人类水平的准确性,但这些模型在临床工作流程中几乎不采用,这主要是由于缺乏解释性。深度学习模型的黑盒子性提出了制定策略来解释这些模型的决策过程的必要性,从而导致了可解释的人工智能(XAI)主题的创建。在这种情况下,我们对应用于医学成像诊断的XAI进行了详尽的调查,包括视觉,基于示例和基于概念的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。此外,我们还包括一组基于报告生成的方法的性能比较。最后,还讨论了将XAI应用于医学成像以及有关该主题的未来研究指示的主要挑战。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator that corresponds to the attention mechanism. Notably, an application of the proposed attention-based operator provides insight into the contribution of each instance to the bag label. We show empirically that our approach achieves comparable performance to the best MIL methods on benchmark MIL datasets and it outperforms other methods on a MNIST-based MIL dataset and two real-life histopathology datasets without sacrificing interpretability.
translated by 谷歌翻译
用于头部和颈鳞状细胞癌(HNSCC)的诊断和治疗管理由常规诊断头和颈部计算断层扫描(CT)扫描引导,以识别肿瘤和淋巴结特征。折叠延伸(ECE)是患者的患者生存结果与HNSCC的强烈预测因子。在改变患者的暂存和管理时,必须检测ECE的发生至关重要。目前临床ECE检测依赖于放射科学医生进行的视觉鉴定和病理确认。基于机器学习(ML)的ECE诊断在近年来的潜力上表现出很高的潜力。然而,在大多数基于ML的ECE诊断研究中,手动注释是淋巴结区域的必要数据预处理步骤。此外,本手册注释过程是耗时,劳动密集型和容易出错。因此,在本文中,我们提出了一种梯度映射引导的可解释网络(GMGenet)框架,以自动执行ECE识别而不需要注释的淋巴结区域信息。提出了梯度加权类激活映射(GRAC-CAM)技术,以指导深度学习算法专注于与ECE高度相关的区域。提取信息丰富的兴趣(VoIS),无需标记淋巴结区域信息。在评估中,所提出的方法是使用交叉验证的训练和测试,可分别实现测试精度和90.2%和91.1%的AUC。已经分析了ECE的存在或不存在并与黄金标准组织病理学发现相关。
translated by 谷歌翻译
了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
我们考虑临床应用异常定位问题。虽然深入学习推动了最近的医学成像进展,但许多临床挑战都没有完全解决,限制了其更广泛的使用。虽然最近的方法报告了高的诊断准确性,但医生因普遍缺乏算法决策和解释性而涉及诊断决策的这些算法,这是关注这些算法。解决这个问题的一种潜在方法是进一步培训这些模型,以便除了分类它们之外,除了分类。然而,准确地进行这一临床专家需要大量的疾病定位注释,这是对大多数应用程序来实现昂贵的任务。在这项工作中,我们通过一种新的注意力弱监督算法来解决这些问题,该弱势监督算法包括分层关注挖掘框架,可以以整体方式统一激活和基于梯度的视觉关注。我们的关键算法创新包括明确序号注意约束的设计,实现了以弱监督的方式实现了原则的模型培训,同时还通过本地化线索促进了产生视觉关注驱动的模型解释。在两个大型胸部X射线数据集(NIH Chescx-Ray14和Chexpert)上,我们展示了对现有技术的显着本地化性能,同时也实现了竞争的分类性能。我们的代码可在https://github.com/oyxhust/ham上找到。
translated by 谷歌翻译
具有多吉吉像素的组织学图像产生了丰富的信息,以用于癌症诊断和预后。在大多数情况下,只能使用幻灯片级标签,因为像素的注释是劳动密集型任务。在本文中,我们提出了一条深度学习管道,以进行组织学图像中的分类。使用多个实例学习,我们试图预测基于降血石蛋白和曙红蛋白(H&E)组织学图像的鼻咽癌(NPC)的潜在膜蛋白1(LMP1)状态。我们利用了与聚合层保持剩余连接的注意机制。在我们的3倍交叉验证实验中,我们分别达到了平均准确性,AUC和F1得分为0.936、0.995和0.862。这种方法还使我们能够通过可视化注意力评分来检查模型的可解释性。据我们所知,这是使用深度学习预测NPC上LMP1状态的首次尝试。
translated by 谷歌翻译
在深度学习方法进行自动医学图像分析的最新成功之前,从业者使用手工制作的放射线特征来定量描述当地的医学图像斑块。但是,提取区分性放射素特征取决于准确的病理定位,这在现实世界中很难获得。尽管疾病分类和胸部X射线的定位方面取得了进步,但许多方法未能纳入临床知名的领域知识。由于这些原因,我们提出了一个放射素引导的变压器(RGT),该变压器(RGT)与\ textit {global}图像信息与\ textit {local}知识引导的放射线信息信息提供准确的心肺病理学定位和分类\ textit {无需任何界限盒{ }。 RGT由图像变压器分支,放射线变压器分支以及聚集图像和放射线信息的融合层组成。 RGT使用对图像分支的自我注意事项,提取了一个边界框来计算放射线特征,该特征由放射线分支进一步处理。然后通过交叉注意层融合学习的图像和放射线特征。因此,RGT利用了一种新型的端到端反馈回路,该回路只能使用图像水平疾病标签引导精确的病理定位。 NIH CHESTXRAR数据集的实验表明,RGT的表现优于弱监督疾病定位的先前作品(在各个相交联合阈值的平均余量为3.6 \%)和分类(在接收器操作方下平均1.1 \%\%\%\%曲线)。接受代码和训练有素的模型将在接受后发布。
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译