我们通过将此任务视为视觉令牌生成问题来提出新的视角来实现图像综合。与现有的范例不同,即直接从单个输入(例如,潜像)直接合成完整图像,新配方使得能够为不同的图像区域进行灵活的本地操作,这使得可以学习内容感知和细粒度的样式控制用于图像合成。具体地,它需要输入潜像令牌的序列,以预测用于合成图像的视觉令牌。在这种观点来看,我们提出了一个基于令牌的发电机(即Tokengan)。特别是,Tokengan输入了两个语义不同的视觉令牌,即,来自潜在空间的学习常量内容令牌和风格代币。鉴于一系列风格令牌,Tokengan能够通过用变压器将样式分配给内容令牌来控制图像合成。我们进行了广泛的实验,并表明拟议的Tokengan在几个广泛使用的图像综合基准上实现了最先进的结果,包括FFHQ和LSUN教会,具有不同的决议。特别地,发电机能够用1024x1024尺寸合成高保真图像,完全用卷曲分配。
translated by 谷歌翻译
Our goal with this survey is to provide an overview of the state of the art deep learning technologies for face generation and editing. We will cover popular latest architectures and discuss key ideas that make them work, such as inversion, latent representation, loss functions, training procedures, editing methods, and cross domain style transfer. We particularly focus on GAN-based architectures that have culminated in the StyleGAN approaches, which allow generation of high-quality face images and offer rich interfaces for controllable semantics editing and preserving photo quality. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview.
translated by 谷歌翻译
最近的研究表明,风格老年提供了对图像合成和编辑的下游任务的有希望的现有模型。然而,由于样式盖的潜在代码被设计为控制全球样式,因此很难实现对合成图像的细粒度控制。我们提出了SemanticStylegan,其中发电机训练以分别培训局部语义部件,并以组成方式合成图像。不同局部部件的结构和纹理由相应的潜在码控制。实验结果表明,我们的模型在不同空间区域之间提供了强烈的解剖。当与为样式器设计的编辑方法结合使用时,它可以实现更细粒度的控制,以编辑合成或真实图像。该模型也可以通过传输学习扩展到其他域。因此,作为具有内置解剖学的通用先前模型,它可以促进基于GaN的应用的发展并实现更多潜在的下游任务。
translated by 谷歌翻译
语义图像编辑利用本地语义标签图来生成所需的内容。最近的工作借用了Spade Block来实现语义图像编辑。但是,由于编辑区域和周围像素之间的样式差异,它无法产生令人愉悦的结果。我们将其归因于以下事实:Spade仅使用与图像无关的局部语义布局,但忽略了已知像素中包含的图像特定样式。为了解决此问题,我们提出了一个样式保存的调制(SPM),其中包括两个调制过程:第一个调制包含上下文样式和语义布局,然后生成两个融合的调制参数。第二次调制采用融合参数来调制特征图。通过使用这两种调制,SPM可以在保留特定图像的上下文样式的同时注入给定的语义布局。此外,我们设计了一种渐进式体系结构,以粗到精细的方式生成编辑的内容。提出的方法可以获得上下文一致的结果,并显着减轻生成区域和已知像素之间的不愉快边界。
translated by 谷歌翻译
GAN的进展使高分辨率的感性质量形象产生了产生。 stylegans允许通过数学操作对W/W+空间中的潜在样式向量进行数学操作进行引人入胜的属性修改,从而有效调节生成器的丰富层次结构表示。最近,此类操作已被推广到原始StyleGan纸中的属性交换之外,以包括插值。尽管StyleGans有许多重大改进,但仍被认为会产生不自然的图像。生成的图像的质量基于两个假设。 (a)生成器学到的层次表示的丰富性,以及(b)样式空间的线性和平滑度。在这项工作中,我们提出了一个层次的语义正常化程序(HSR),该层次正常化程序将生成器学到的层次表示与大量数据学到的相应的强大功能保持一致。 HSR不仅可以改善发电机的表示,还可以改善潜在风格空间的线性和平滑度,从而导致产生更自然的样式编辑的图像。为了证明线性改善,我们提出了一种新型的度量 - 属性线性评分(ALS)。通过改善感知路径长度(PPL)度量的改善,在不同的标准数据集中平均16.19%的不自然图像的生成显着降低,同时改善了属性编辑任务中属性变化的线性变化。
translated by 谷歌翻译
最近,大型预磨损模型(例如,BERT,STYLEGAN,CLIP)在其域内的各种下游任务中表现出很好的知识转移和泛化能力。在这些努力的启发中,在本文中,我们提出了一个统一模型,用于开放域图像编辑,重点是开放式域图像的颜色和音调调整,同时保持原始内容和结构。我们的模型了解许多现有照片编辑软件中使用的操作空间(例如,对比度,亮度,颜色曲线)更具语义,直观,易于操作的统一编辑空间。我们的模型属于图像到图像转换框架,由图像编码器和解码器组成,并且在图像之前和图像的成对上培训以产生多模式输出。我们认为,通过将图像对反馈到学习编辑空间的潜在代码中,我们的模型可以利用各种下游编辑任务,例如语言引导图像编辑,个性化编辑,编辑式聚类,检索等。我们广泛地研究实验中编辑空间的独特属性,并在上述任务上展示了卓越的性能。
translated by 谷歌翻译
以前的纵向图像生成方法大致分为两类:2D GAN和3D感知的GAN。 2D GAN可以产生高保真肖像,但具有低视图一致性。 3D感知GaN方法可以维护查看一致性,但它们所生成的图像不是本地可编辑的。为了克服这些限制,我们提出了FENERF,一个可以生成查看一致和本地可编辑的纵向图像的3D感知生成器。我们的方法使用两个解耦潜码,以在具有共享几何体的空间对齐的3D卷中生成相应的面部语义和纹理。从这种底层3D表示中受益,FENERF可以联合渲染边界对齐的图像和语义掩码,并使用语义掩模通过GaN反转编辑3D音量。我们进一步示出了可以从广泛可用的单手套图像和语义面膜对中学习这种3D表示。此外,我们揭示了联合学习语义和纹理有助于产生更精细的几何形状。我们的实验表明FENERF在各种面部编辑任务中优于最先进的方法。
translated by 谷歌翻译
反转生成对抗网络(GAN)可以使用预训练的发电机来促进广泛的图像编辑任务。现有方法通常采用gan的潜在空间作为反转空间,但观察到空间细节的恢复不足。在这项工作中,我们建议涉及发电机的填充空间,以通过空间信息补充潜在空间。具体来说,我们替换具有某些实例感知系数的卷积层中使用的恒定填充(例如,通常为零)。通过这种方式,可以适当地适当地适应了预训练模型中假定的归纳偏差以适合每个单独的图像。通过学习精心设计的编码器,我们设法在定性和定量上提高了反演质量,超过了现有的替代方案。然后,我们证明了这样的空间扩展几乎不会影响天然甘纳的歧管,因此我们仍然可以重复使用甘斯(Gans)对各种下游应用学到的先验知识。除了在先前的艺术中探讨的编辑任务外,我们的方法还可以进行更灵活的图像操纵,例如对面部轮廓和面部细节的单独控制,并启用一种新颖的编辑方式,用户可以高效地自定义自己的操作。
translated by 谷歌翻译
与Stylegan的图像操纵近年来一直是越来越多的问题。由于这些潜在空间中的语义和空间操纵精度有限,而且由于这些潜在空间中的语义和空间操纵精度有限,而且,则在分析几个语义潜在空间方面取得了巨大成功。然而,由于这些潜在空间中的语义和空间操纵精度有限,现有的努力被击败在细粒度的样式图像操作中,即本地属性翻译。要解决此问题,我们发现特定于属性的控制单元,该单元由多个特征映射和调制样式组成。具体而言,我们协同处理调制样式通道,并以控制单元而不是单独的方式映射,以获得语义和空间解除态控制。此外,我们提出了一种简单但有效的方法来检测特定于属性的控制单元。我们沿着特定稀疏方向向量移动调制样式,并更换用于计算要素映射的滤波器方号以操纵这些控制单元。我们在各种面部属性操纵任务中评估我们所提出的方法。广泛的定性和定量结果表明,我们的提出方法对最先进的方法有利地表现出。实图像的操纵结果进一步显示了我们方法的有效性。
translated by 谷歌翻译
In this work, we propose TediGAN, a novel framework for multi-modal image generation and manipulation with textual descriptions. The proposed method consists of three components: StyleGAN inversion module, visual-linguistic similarity learning, and instance-level optimization. The inversion module maps real images to the latent space of a well-trained StyleGAN. The visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space. The instancelevel optimization is for identity preservation in manipulation. Our model can produce diverse and high-quality images with an unprecedented resolution at 1024 2 . Using a control mechanism based on style-mixing, our Tedi-GAN inherently supports image synthesis with multi-modal inputs, such as sketches or semantic labels, with or without instance guidance. To facilitate text-guided multimodal synthesis, we propose the Multi-Modal CelebA-HQ, a large-scale dataset consisting of real face images and corresponding semantic segmentation map, sketch, and textual descriptions. Extensive experiments on the introduced dataset demonstrate the superior performance of our proposed method. Code and data are available at https://github.com/weihaox/TediGAN.
translated by 谷歌翻译
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
translated by 谷歌翻译
尽管在广泛的愿景任务中取得了诱人的成功,但变形金刚尚未在高分辨率图像生成建模中作为Convnets的讨论能力。在本文中,我们寻求探索使用纯变压器来构建用于高分辨率图像合成的生成对抗网络。为此,我们认为,当地的关注是在计算效率和建模能力之间取得平衡至关重要。因此,所提出的发电机采用基于风格的架构中的Swin变压器。为了实现更大的接收领域,我们提出了双重关注,同时利用本地和移位窗的上下文,从而提高了发电质量。此外,我们表明提供了在基于窗口的变压器中丢失的绝对位置的知识极大地利益了代理。所提出的STYLESWIN可扩展到高分辨率,粗糙几何和细结构都受益于变压器的强效力。然而,在高分辨率合成期间发生阻塞伪像,因为以块明智的方式执行局部注意力可能会破坏空间一致性。为了解决这一点,我们经验研究了各种解决方案,其中我们发现采用小波鉴别器来检查光谱差异的措施有效地抑制伪影。广泛的实验表明了对现有的基于变压器的GAN的优越性,特别是在高分辨率上,例如高分辨率,例如1024x1024。如果没有复杂的培训策略,则在Celeba-HQ 1024上赢得了STYLEGAN,并且在FFHQ-1024上实现了对PAR的表现,证明了使用变压器进行高分辨率图像生成的承诺。代码和模型将在https://github.com/microsoft/styleswin上使用。
translated by 谷歌翻译
我们提出了Exe-Gan,这是一种新型的使用生成对抗网络的典范引导的面部介绍框架。我们的方法不仅可以保留输入面部图像的质量,而且还可以使用类似示例性的面部属性来完成图像。我们通过同时利用输入图像的全局样式,从随机潜在代码生成的随机样式以及示例图像的示例样式来实现这一目标。我们介绍了一个新颖的属性相似性指标,以鼓励网络以一种自我监督的方式从示例中学习面部属性的风格。为了确保跨地区边界之间的自然过渡,我们引入了一种新型的空间变体梯度反向传播技术,以根据空间位置调整损耗梯度。关于公共Celeba-HQ和FFHQ数据集的广泛评估和实际应用,可以验证Exe-GAN的优越性,从面部镶嵌的视觉质量来看。
translated by 谷歌翻译
Figure 1. The proposed pixel2style2pixel framework can be used to solve a wide variety of image-to-image translation tasks. Here we show results of pSp on StyleGAN inversion, multi-modal conditional image synthesis, facial frontalization, inpainting and super-resolution.
translated by 谷歌翻译
随着信息中的各种方式存在于现实世界中的各种方式,多式联信息之间的有效互动和融合在计算机视觉和深度学习研究中的多模式数据的创造和感知中起着关键作用。通过卓越的功率,在多式联运信息中建模互动,多式联运图像合成和编辑近年来已成为一个热门研究主题。与传统的视觉指导不同,提供明确的线索,多式联路指南在图像合成和编辑方面提供直观和灵活的手段。另一方面,该领域也面临着具有固有的模态差距的特征的几个挑战,高分辨率图像的合成,忠实的评估度量等。在本调查中,我们全面地阐述了最近多式联运图像综合的进展根据数据模型和模型架构编辑和制定分类。我们从图像合成和编辑中的不同类型的引导方式开始介绍。然后,我们描述了多模式图像综合和编辑方法,其具有详细的框架,包括生成的对抗网络(GAN),GaN反转,变压器和其他方法,例如NERF和扩散模型。其次是在多模式图像合成和编辑中广泛采用的基准数据集和相应的评估度量的综合描述,以及分析各个优点和限制的不同合成方法的详细比较。最后,我们为目前的研究挑战和未来的研究方向提供了深入了解。与本调查相关的项目可在HTTPS://github.com/fnzhan/mise上获得
translated by 谷歌翻译
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
translated by 谷歌翻译
最近对变形金刚的爆炸利益提出了他们成为计算机视觉任务的强大“通用”模型的潜力,例如分类,检测和分割。虽然这些尝试主要研究歧视模型,但我们探索变压器,更加臭名昭着的难以愿景任务,例如生成的对抗网络(GANS)。我们的目标是通过仅使用纯的变压器的架构,开展一项完全没有卷曲的GAN的试点研究。我们的Vanilla GaN架构被称为Cransgan,包括一个基于内存友好的变换器的发电机,逐渐增加了特征分辨率,并且相应地是多尺度鉴别器来捕获同时语义上下文和低级纹理。在他们之上,我们介绍了新的网格自我关注模块,以便进一步缓解记忆瓶颈,以便扩展到高分辨率的发电。我们还开发了一个独特的培训配方,包括一系列技术,可以减轻转发的培训不稳定问题,例如数据增强,修改的归一化和相对位置编码。与使用卷积骨架的当前最先进的GAN相比,我们最好的建筑达到了竞争力的表现。具体而言,转发在STL-10上设置10.43和18.28的最新的最新成立得分为18.28,表现优于样式。当涉及更高分辨率(例如256 x 256)的生成任务时,例如Celeba-HQ和Lsun-Church,Rancorgan继续生产具有高保真度和令人印象深刻的纹理细节的不同视觉示例。此外,我们通过可视化培训动力学,深入了解基于变压器的生成模型,了解他们的行为如何与卷积的行为。代码可在https://github.com/vita-group/transgan中获得。
translated by 谷歌翻译
尽管使用StyleGan进行语义操纵的最新进展,但对真实面孔的语义编辑仍然具有挑战性。 $ W $空间与$ W $+空间之间的差距需要重建质量与编辑质量之间的不良权衡。为了解决这个问题,我们建议通过用基于注意的变压器代替Stylegan映射网络中的完全连接的层来扩展潜在空间。这种简单有效的技术将上述两个空间整合在一起,并将它们转换为一个名为$ W $ ++的新的潜在空间。我们的修改后的Stylegan保持了原始StyleGan的最新一代质量,并具有中等程度的多样性。但更重要的是,提议的$ W $ ++空间在重建质量和编辑质量方面都取得了卓越的性能。尽管有这些显着优势,但我们的$ W $ ++空间支持现有的反转算法和编辑方法,仅由于其与$ w/w $+空间的结构相似性,因此仅可忽略不计的修改。 FFHQ数据集上的广泛实验证明,我们提出的$ W $ ++空间显然比以前的$ w/w $+空间更可取。该代码可在https://github.com/anonsubm2021/transstylegan上公开提供。
translated by 谷歌翻译
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.
translated by 谷歌翻译
Facial expression recognition (FER) plays a significant role in the ubiquitous application of computer vision. We revisit this problem with a new perspective on whether it can acquire useful representations that improve FER performance in the image generation process, and propose a novel generative method based on the image inversion mechanism for the FER task, termed Inversion FER (IFER). Particularly, we devise a novel Adversarial Style Inversion Transformer (ASIT) towards IFER to comprehensively extract features of generated facial images. In addition, ASIT is equipped with an image inversion discriminator that measures the cosine similarity of semantic features between source and generated images, constrained by a distribution alignment loss. Finally, we introduce a feature modulation module to fuse the structural code and latent codes from ASIT for the subsequent FER work. We extensively evaluate ASIT on facial datasets such as FFHQ and CelebA-HQ, showing that our approach achieves state-of-the-art facial inversion performance. IFER also achieves competitive results in facial expression recognition datasets such as RAF-DB, SFEW and AffectNet. The code and models are available at https://github.com/Talented-Q/IFER-master.
translated by 谷歌翻译