Multilayer Perceptrons struggle to learn certain simple arithmetic tasks. Specialist neural modules for arithmetic can outperform classical architectures with gains in extrapolation, interpretability and convergence speeds, but are highly sensitive to the training range. In this paper, we show that Neural Multiplication Units (NMUs) are unable to reliably learn tasks as simple as multiplying two inputs when given different training ranges. Causes of failure are linked to inductive and input biases which encourage convergence to solutions in undesirable optima. A solution, the stochastic NMU (sNMU), is proposed to apply reversible stochasticity, encouraging avoidance of such optima whilst converging to the true solution. Empirically, we show that stochasticity provides improved robustness with the potential to improve learned representations of upstream networks for numerical and image tasks.
translated by 谷歌翻译
神经算术逻辑模块已成为一个不断增长的领域,尽管仍然是一个利基领域。这些模块是神经网络,旨在在学习算术和/或逻辑操作中实现系统的概括,例如$ \ {+, - ,\ times,\ div,\ leq,\ leq,\ textrm {and} \} $,同时也可以解释。本文是首次讨论该领域进度的现状,从神经算术逻辑单元(NALU)开始解释关键作品。为了关注Nalu的缺点,我们提供了深入的分析,以理论有关最近模块的设计选择。在实验设置和发现上进行了模块之间的交叉比较,我们在基本实验中强调了不一致,导致无法直接比较跨论文。为了减轻现有的不一致之处,我们创建了一个基准,比较了所有现有的算术nalms。我们通过对NALU的现有应用和需要进一步探索的研究方向进行新的讨论来结束。
translated by 谷歌翻译
深度学习使用由其重量进行参数化的神经网络。通常通过调谐重量来直接最小化给定损耗功能来训练神经网络。在本文中,我们建议将权重重新参数转化为网络中各个节点的触发强度的目标。给定一组目标,可以计算使得发射强度最佳地满足这些目标的权重。有人认为,通过我们称之为级联解压缩的过程,使用培训的目标解决爆炸梯度的问题,并使损失功能表面更加光滑,因此导致更容易,培训更快,以及潜在的概括,神经网络。它还允许更容易地学习更深层次和经常性的网络结构。目标对重量的必要转换有额外的计算费用,这是在许多情况下可管理的。在目标空间中学习可以与现有的神经网络优化器相结合,以额外收益。实验结果表明了使用目标空间的速度,以及改进的泛化的示例,用于全连接的网络和卷积网络,以及调用和处理长时间序列的能力,并使用经常性网络进行自然语言处理。
translated by 谷歌翻译
人工智能的最终目标之一是从原始数据中学习通用和人类解剖知识。神经符号推理方法通过使用手动设计的符号知识库改善神经网络的训练来部分解决此问题。在从原始数据中学到符号知识的情况下,该知识缺乏解决复杂问题所需的表现力。在本文中,我们介绍了神经符号归纳学习者(NSIL),该方法训练神经网络从原始数据中提取潜在概念,而学习符号知识可以解决复杂问题,该知识是根据这些潜在概念定义的。我们方法的新颖性是一种基于神经和符号成分的训练性能,使符号学习者偏向于学习改进的知识的方法。我们评估了两个问题领域的NSIL,这些问题领域需要具有不同级别的复杂性学习知识,并证明NSIL学习知识,而这些知识是不可能使用其他神经符号系统学习的知识,同时就准确性和数据效率而言优于基线模型。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
translated by 谷歌翻译
Multilayer Neural Networks trained with the backpropagation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques.Real-life document recognition systems are composed of multiple modules including eld extraction, segmentation, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall performance measure.Two systems for on-line handwriting recognition are described. Experiments demonstrate the advantage of global training, and the exibility of Graph Transformer Networks.A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network character recognizers combined with global training techniques to provides record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
translated by 谷歌翻译
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
大多数设置深度学习的预测模型,使用Set-Scifariant操作,但它们实际上在MultiSet上运行。我们表明设置的函数不能代表多种功能上的某些功能,因此我们介绍了更适当的多种式概念概念。我们确定现有的深度设置预测网络(DSPN)可以是多机构的,而不会被设定的标准规模阻碍,并通过近似隐式差分改进它,允许更好地优化,同时更快和节省存储器。在一系列玩具实验中,我们表明,多机构的角度是有益的,在大多数情况下,我们对DSPN的变化达到了更好的结果。关于CLEVR对象性质预测,由于通过隐含分化所取得的益处,我们在最先进的评估指标中从8%到77%的最先进的槽注意力从8%提高到77%。
translated by 谷歌翻译
变压器对数学的大多数应用,从整合到定理证明,专注于象征性。在本文中,我们表明,可以培训变压器以高精度地执行数值计算。我们考虑线性代数的问题:矩阵转仓,加法,乘法,特征值和载体,奇异值分解和反转。在随机矩阵的数据集上训练小型变压器(最多六层),我们在所有问题上实现高精度(超过90%)。我们还表明,训练有素的模型可以通过从更多样化的数据集(特别是从具有非独立性和相同分布系数的矩阵训练)来概括他们的训练分配,并且可以大大提高域的域准确度。最后,我们表明,可以利用几枪学习来重新列车模型来解决更大的问题。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can seriously undermine the security of the system supported by the DNN, sometimes with devastating consequences. For example, autonomous vehicles can be crashed, illicit or illegal content can bypass content filters, or biometric authentication systems can be manipulated to allow improper access. In this work, we introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs. We analytically investigate the generalizability and robustness properties granted by the use of defensive distillation when training DNNs. We also empirically study the effectiveness of our defense mechanisms on two DNNs placed in adversarial settings. The study shows that defensive distillation can reduce effectiveness of sample creation from 95% to less than 0.5% on a studied DNN. Such dramatic gains can be explained by the fact that distillation leads gradients used in adversarial sample creation to be reduced by a factor of 10 30 . We also find that distillation increases the average minimum number of features that need to be modified to create adversarial samples by about 800% on one of the DNNs we tested.
translated by 谷歌翻译
我们证明,与畴壁(DW)位置的大量随机变化的量化量(名义上是5态)突触的极低分辨率可以是节能的,并且与使用浮动精度相比,与类似尺寸的深度神经网络(DNN)相比具有相当高的测试精度。突触权重。具体地,电压控制的DW器件展示随机性的随机行为,与微磁性模拟严格,并且只能编码有限状态;但是,它们在训练和推论中都可以非常节能。我们表明,通过对学习算法实施合适的修改,我们可以解决随机行为以及减轻其低分辨率的影响,以实现高测试精度。在这项研究中,我们提出了原位和前地训练算法,基于Hubara等人提出的算法的修改。 [1]适用于突触权重的量化。我们使用2个,3和5状态DW设备作为Synapse培训Mnist DataSet上的几个5层DNN。对于原位训练,采用单独的高精度存储器单元来保护和累积重量梯度,然后被量化以编程低精密DW设备。此外,在训练期间使用尺寸的噪声公差余量来解决内部编程噪声。对于前训训练,首先基于所表征的DW设备模型和噪声公差余量进行前体DNN,其类似于原位培训。值得注意的是,对于原位推断,对设备的能量耗散装置仅是每次推断仅13页,因为在整个MNIST数据集上进行10个时期进行训练。
translated by 谷歌翻译