最终用户如何提供反馈,如果部署的结构化预测模型生成不正确的输出,则提供反馈?我们的目标是允许用户通过对模型输出的反馈来直接通过交互直接纠正错误。我们创建动态内存架构,具有越来越多的反馈记忆,关于输出中的错误。鉴于新的,看不见的输入,我们的模型可以使用类似于类似的过去的错误状态的反馈。在脚本生成任务上,我们凭经验显示模型的学习有效地应用反馈(最多30分),同时避免在部署后的类似过去错误(在看不见的方案集上提高了10分。这是加强部署模型的第一步,潜在地扩大其实用程序。
translated by 谷歌翻译
最终用户如何提供反馈,如果部署的结构化预测模型产生不一致的输出,忽略人类语言的结构复杂性?这是一个新兴主题,最近合成或约束设置的进展,下一个大的飞跃需要在现实世界中进行测试和调整模型。我们呈现了一个新的DataSet,interscript,包含有关已部署模型的用户反馈,该模型生成复杂的日常任务。依据包含8,466个数据点 - 输入是可能是错误的脚本和用户反馈,输出是修改的脚本。我们分散了两种用例,这可能会在互动学习中显着推进最先进的。数据集可用于:https://github.com/allenai/interscript。
translated by 谷歌翻译
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
translated by 谷歌翻译
从头开始解决复杂问题通常是有挑战性的,但如果我们可以访问其解决方案的其他类似问题,则更容易 - 一种称为基于案例的推理(CBR)的范式。我们提出了一种神经象征性的CBR方法(CBR-KBQA),用于在大知识库上应答。 CBR-KBQA由非参数内存组成,该内存存储案例(问题和逻辑表单)和参数模型,该参数模型可以通过检索与其相关的案例来为新问题生成逻辑表单。在包含复杂问题的几个KBQA数据集上,CBR-KBQA实现了竞争性能。例如,在ComplexWebQuestions数据集上,CBR-KBQA以11 \%的准确度优于当前最新状态。此外,我们表明CBR-KBQA能够使用新案例\ EMPH {没有}任何进一步的培训:通过在案例存储器中纳入一些人类标记的示例,CBR-KBQA能够成功地生成包含未经看线KB实体的逻辑表格以及关系。
translated by 谷歌翻译
大型语言模型在各种问题答案(QA)基准测试方面取得了高度的性能,但其产出的解释性仍然难以捉摸。最近建议将结构化的解释称为“综合树”,以解释和检查质量检查系统的答案。为了更好地生成此类树木,我们提出了一种称为迭代检索生成推理​​器(IRGR)的架构。我们的模型能够通过系统地生成文本前提的分步解释来解释给定的假设。 IRGR模型迭代地搜索合适的场所,一次构建单个零件步骤。与以前的方法相反,我们的方法结合了生成步骤和房屋的检索,允许模型利用中间结论,并减轻基线编码器模型的输入大小限制。我们使用IntailmentBank数据集进行实验,在该数据集中,我们在前提检索和索引树上的现有基准优于现有的基准,总体正确性增长了约300%。
translated by 谷歌翻译
脚本知识(Schank和Abelson,1975年)长期以来一直被认为是对语言理解至关重要的,因为它可以帮助在叙述中填写未定的信息。然而,由于报告偏见(Gordon和Van Durme,2013年),这些知识昂贵,并且难以从文本中诱导文本昂贵。在这项工作中,我们对科学问题感兴趣,这些问题是通过预先接受训练的生成语言模型(LMS)提供和可访问是否存在显式脚本知识。为此,我们介绍了在自然语言提示形式的情况下生成完整事件序列描述(ESDS)的任务。在零拍摄探测实验中,我们发现生成LMS产生差,主要省略,无关紧要,重复或错误的事件。为了解决这个问题,我们提出了一种基于管道的脚本感应框架(SIF),可以为看不见场景产生良好的质量ESDS(例如,烘烤蛋糕)。 SIF是一个双阶段的框架,在第一阶段的一小集ESD示例上进行微调LM。在第二阶段,使用基于Roberta的模型为取消操作场景生成的ESD来过滤无关的事件,删除重复,并重新排序时间上未按顺序的事件。通过自动和手动评估,我们证明SIF在微调的LM上产生了大量的改进(1美元 - 3美元的蓝点)。然而,手动分析表明,有很好的改进空间,为诱导脚本知识提供了新的研究方向。
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
源代码存储库由大型代码库组成,通常包含容易发生的程序。软件的复杂性日益增加导致时间和识别这些缺陷的时间和成本急剧上升。存在各种方法可以自动生成错误代码的修复程序。但是,由于特定错误的可能解决方案的组合空间很大,因此没有很多工具和数据集可以有效地评估生成的代码。在这项工作中,我们介绍了FixeVal,这是一个基准,其中包括竞争性编程问题及其各自修复程序的基准。我们引入了丰富的测试套件,以评估和评估模型生成程序修复的正确性。我们将两种在编程语言上鉴定的变压器语言模型视为我们的基准,并使用基于匹配和基于执行的评估指标对其进行比较。我们的实验表明,基于匹配的指标不能准确反映模型生成的程序修复,而基于执行的方法通过专门为该解决方案设计的所有情况和场景评估程序。因此,我们认为FixeVal提供了朝着实际自动错误修复和模型生成的代码评估的步骤。
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
Task-oriented semantic parsing is increasingly being used in user-facing applications, making measuring the calibration of parsing models especially important. We examine the calibration characteristics of six models across three model families on two common English semantic parsing datasets, finding that many models are reasonably well-calibrated and that there is a trade-off between calibration and performance. Based on confidence scores across three models, we propose and release new challenge splits of the two datasets we examine. We then illustrate the ways a calibrated model can be useful in balancing common trade-offs in task-oriented parsing. In a simulated annotator-in-the-loop experiment, we show that using model confidence allows us to improve the accuracy on validation programs by 9.6% (absolute) with annotator interactions on only 2.2% of tokens. Using sequence-level confidence scores, we then examine how we can optimize trade-off between a parser's usability and safety. We show that confidence-based thresholding can reduce the number of incorrect low-confidence programs executed by 76%; however, this comes at a cost to usability. We propose the DidYouMean system which balances usability and safety. We conclude by calling for calibration to be included in the evaluation of semantic parsing systems, and release a library for computing calibration metrics.
translated by 谷歌翻译
机器学习(ML)模型越来越多地用于在现实世界应用中做出关键决策,但它们也变得更加复杂,使它们更难理解。为此,已经提出了几种解释模型预测的技术。但是,从业人员努力利用解释,因为他们通常不知道该使用哪个,如何解释结果,并且可能没有足够的数据科学经验来获得解释。此外,大多数当前的作品都集中在生成一声解释上,并且不允许用户跟进并提出有关解释的细粒度问题,这可能会令人沮丧。在这项工作中,我们通过引入TalkTomodel:一个开放式对话系统来解决这些挑战,以了解机器学习模型。具体而言,TalkTomodel包括三个关键组成部分:1)用于参与对话的自然语言接口,使理解高度访问的ML模型,2)适应任何表格模型和数据集的对话引擎,解释自然语言,将其映射到适当的操作(例如,特征重要性解释,反事实说明,显示模型错误)并生成文本响应,3)执行组件运行操作并确保说明准确。我们对TalkTomodel进行了定量和人类的主题评估。我们发现该系统以高精度了解新颖数据集和模型上的用户问题,这表明了系统将其推广到新情况的能力。在人类评估中,有73%的医护人员(例如,医生和护士)同意他们将使用TalkTomodel对基线点击系统使用,而84.6%的ML研究生同意TalkTomodel更容易使用。
translated by 谷歌翻译
我们提出了Blenderbot 3,这是一个175B参数对话模型,能够通过访问Internet和长期内存进行开放域对话,并接受了大量用户定义的任务的培训。我们同时发布了模型权重和代码,还将模型部署在公共网页上,以与有机用户进行交互。该技术报告描述了该模型的构建方式(建筑,模型和培训计划)以及其部署的细节,包括安全机制。人类评估表明,它优于现有的开放域对话代理,包括其前身(Roller等,2021; Komeili等,2022)。最后,我们使用部署收集的数据详细介绍了持续学习的计划,该数据也将公开发布。因此,该研究计划的目标是使社区能够研究通过互动学习的不断改进的负责任的代理商。
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
预先训练的大语言模型(LLM)(例如OpenAI Codex)通过从非正式自然语言(NL)意图中生成自然代码来自动化编码的重要方面。但是,生成的代码无法满足用户意图的任何正确性保证。实际上,很难定义正确性的概念,因为自然语言可能是模棱两可的,并且缺乏正式的语义。在本文中,我们通过提出测试驱动的用户形式化(TDUIF)的工作流程来解决以上问题的第一步,该工作流利用轻量级用户的反馈共同将用户的意图正式化为测试(部分规范) ),(b)生成符合正式用户意图的代码。要对算法进行可扩展的大规模自动化评估,而无需循环中的用户,我们描述了如何使用参考解决方案模拟用户与高保真性的互动。我们还描述并实施了几种算法组件(包括突变和排名一组测试)的替代实现,这些实现可用于有效解决TDUIF问题。我们已经开发了一个系统的Ticoder,该系统实现了多种解决方案来进行TDUIF,并将其对MBPP学术代码生成基准测试的相对有效性进行了比较。在MBPP上使用OpenAI Codex LLM的结果很有希望:我们的最佳算法将通行证@1代码生成准确度指标从48.39%提高到单个用户查询,最高为85.48%,最多可达55.48%,最多可提供5个用户查询。其次,我们可以生成与用户意图在1.69个用户查询中的非平凡功能单位测试,该数据集为90.40%的示例,用于此数据集。
translated by 谷歌翻译
自然语言接口到数据库(NLIDB),其中用户在自然语言(NL)上姿势查询是至关重要的,使非专家能够从数据中获得见解。相比之下,开发此类接口依赖于经常代码启发式的专家来映射NL到SQL。或者,基于机器学习模型的NLIDB依赖于用作训练数据的NL到SQL映射的监督示例(NL-SQL对)。再次采购这些示例,使用专家,该专家通常涉及超过一次性相互作用。即,部署NLIDB的每个数据域都可能具有不同的特征,因此需要专用的启发式或域特定的培训示例。为此,我们提出了一种使用弱监管培训基于机器学习的NLIDB的替代方法。我们使用最近提出的问题分解表示称为qdmr,是NL和正式查询语言之间的中间。最近的工作表明,非专家通常在将NL转化为QDMR时是成功的。因此,我们使用NL-QDMR对以及问题答案,作为自动综合SQL查询的监督。然后使用NL问题和合成的SQL来培训NL-TO-SQL模型,我们在五个基准数据集中测试。广泛的实验表明,我们的解决方案需要零专家注释,竞争性地与专家注释数据培训的模型竞争地表现得很竞争。
translated by 谷歌翻译