我们将后处理应用于音频事件分类模型的类概率分布输出,并采用强化学习来共同发现后处理堆栈的各个阶段的最佳参数,例如分类阈值和所使用的中间过滤算法的内核大小平滑模型预测。为了实现这一目标,我们定义了一个强化学习环境:1)状态是该模型为给定音频样本提供的类概率分布,2)操作是选择后处理的每个参数的候选最佳值堆栈,3)奖励基于我们旨在优化的分类准确度度量,即在我们的情况下,这是基于音频事件的宏F1得分。我们将我们的后处理应用于两个音频事件分类模型的类概率分布输出,这些模型已提交给Dcase Task4 2020挑战。我们发现,通过使用强化学习来发现应用于音频事件分类模型输出的后处理堆栈的最佳每级参数,我们可以改进基于音频事件的宏F1分数(使用的主要指标在DCASE挑战中,将音频事件分类精度比较4-5%,与使用手动调谐参数相同的后处理堆栈相比。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
声音事件检测(SED)在监控,视频索引等中的广泛应用程序上获得了越来越长的关注。SED中的现有模型主要产生帧级预测,将其转换为序列多标签分类问题。基于帧的模型的一个关键问题是它追求最佳的帧级预测而不是最佳的事件级预测。此外,它需要后处理,无法以端到端的方式培训。本文首先介绍了一维检测变压器(1D-DETR),受到图像对象检测的检测变压器的启发。此外,鉴于SED的特征,音频查询分支和用于微调的一对多匹配策略将模型添加到1D-DETR以形成声音事件检测变压器(SEDT)。据我们所知,Sedt是第一个基于事件和最终的SED模型。实验在城市 - SED数据集和DCES2019任务4数据集上进行,两者都表明席克可以实现竞争性能。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
新一代网络威胁的兴起要求更复杂和智能的网络防御解决方案,配备了能够学习在没有人力专家知识的情况下做出决策的自治代理。近年来提出了用于自动网络入侵任务的几种强化学习方法(例如,马尔可夫)。在本文中,我们介绍了一种新一代的网络入侵检测方法,将基于Q学习的增强学习与用于网络入侵检测的深馈前神经网络方法相结合。我们提出的深度Q-Learning(DQL)模型为网络环境提供了正在进行的自动学习能力,该网络环境可以使用自动试验误差方法检测不同类型的网络入侵,并连续增强其检测能力。我们提供涉及DQL模型的微调不同的超参数的细节,以获得更有效的自学。根据我们基于NSL-KDD数据集的广泛实验结果,我们确认折扣因子在250次训练中设定为0.001,产生了最佳的性能结果。我们的实验结果还表明,我们所提出的DQL在检测不同的入侵课程和优于其他类似的机器学习方法方面的高度有效。
translated by 谷歌翻译
有效的强化学习需要适当的平衡探索和剥削,由动作分布的分散定义。但是,这种平衡取决于任务,学习过程的当前阶段以及当前的环境状态。指定动作分布分散的现有方法需要依赖问题的超参数。在本文中,我们建议使用以下原则自动指定动作分布分布:该分布应具有足够的分散,以评估未来的政策。为此,应调整色散以确保重播缓冲区中的动作和产生它们的分布模式的足够高的概率(密度),但是这种分散不应更高。这样,可以根据缓冲区中的动作有效评估策略,但是当此策略收敛时,动作的探索性随机性会降低。上述原则在挑战性的基准蚂蚁,Halfcheetah,Hopper和Walker2D上进行了验证,并取得了良好的效果。我们的方法使动作标准偏差收敛到与试验和错误优化产生的相似的值。
translated by 谷歌翻译
近年来近年来,加固学习方法已经发展了一系列政策梯度方法,主要用于建模随机政策的高斯分布。然而,高斯分布具有无限的支持,而现实世界应用通常具有有限的动作空间。如果它提供有限支持,则该解剖会导致可以消除的估计偏差,因为它提出了有限的支持。在这项工作中,我们调查如何在Openai健身房的两个连续控制任务中训练该测试策略在训练时执行该测试策略。对于这两个任务来说,测试政策在代理人的最终预期奖励方面优于高斯政策,也显示出更多的稳定性和更快的培训过程融合。对于具有高维图像输入的卡路里环境,在高斯政策中,代理的成功率提高了63%。
translated by 谷歌翻译
强化学习(RL)和脑电脑接口(BCI)是过去十年一直在增长的两个领域。直到最近,这些字段彼此独立操作。随着对循环(HITL)应用的兴趣升高,RL算法已经适用于人类指导,从而产生互动强化学习(IRL)的子领域。相邻的,BCI应用一直很感兴趣在人机交互期间从神经活动中提取内在反馈。这两个想法通过将BCI集成到IRL框架中,将RL和BCI设置在碰撞过程中,通过将内在反馈可用于帮助培训代理商来帮助框架。这种交叉点被称为内在的IRL。为了进一步帮助,促进BCI和IRL的更深层次,我们对内在IRILL的审查有着重点在于其母体领域的反馈驱动的IRL,同时还提供有关有效性,挑战和未来研究方向的讨论。
translated by 谷歌翻译
大自然的一个迷人方面在于它能够产生大型和多样化的生物体,这些生物都在他们的利基中都很高兴。相比之下,大多数AI算法专注于向给定问题找到一个有效的解决方案。除了表现外,旨在实现多样性是处理勘探开发权衡的便捷方式,在学习中发挥着核心作用。当返回的集合包含对所考虑的问题的几个工作解决方案时,它还允许增加鲁棒性,使其适用于机器人等真实应用。质量 - 多样性(QD)方法是为此目的设计的进化算法。本文提出了一种新颖的QD - PG,它结合了政策梯度算法的强度和质量多样性方法,在连续控制环境中产生了各种和高性能的神经政策的集合。这项工作的主要贡献是引入多样性政策梯度(DPG),该梯度(DPG)利用时刻级别的信息以采样有效的方式培养更多样化的策略。具体而言,QD-PG从地图 - E LITES网格中选择神经控制器,并使用两个基于梯度的突变运算符来提高质量和多样性,从而产生稳定的人口更新。我们的结果表明,QD - PG产生了各种解决方案的集合,解决了具有挑战性的勘探和控制问题,同时是比其进化竞争对手更高的样本效率的两个数量级。
translated by 谷歌翻译
排队系统出现在许多重要的现实生活应用中,包括通信网络,运输和制造系统。加固学习(RL)框架是排队控制问题的合适模型,在该问题中,基础动力通常未知,并且代理几乎没有从环境中接收到导航的信息。在这项工作中,我们将排队模型作为RL环境的优化方面进行了研究,并提供了有效学习最佳政策的见解。我们通过使用排队网络系统的固有属性来提出策略的新参数化。实验显示了我们的方法的良好性能,从轻度到繁忙的交通状况各种负载条件。
translated by 谷歌翻译
我们为政策梯度方法介绍了一种新颖的训练程序,其中用于在飞行中优化强化学习算法的超参数。与其他HyperParameter搜索不同,我们将HyperParameter调度标记为标准的Markov决策过程,并使用epiSodic内存来存储所使用的超参数和培训背景的结果。在任何策略更新步骤中,策略学习者都指的是存储的经验,并自适应地将其学习算法与存储器确定的新的超参数重新配置。这种机制被称为epiSodic政策梯度训练(EPGT),可以联合学习单个运行中的策略和学习算法的封面。连续和离散环境的实验结果证明了利用所提出的方法促进各种政策梯度算法的性能的优点。
translated by 谷歌翻译
We present temporally layered architecture (TLA), a biologically inspired system for temporally adaptive distributed control. TLA layers a fast and a slow controller together to achieve temporal abstraction that allows each layer to focus on a different time-scale. Our design is biologically inspired and draws on the architecture of the human brain which executes actions at different timescales depending on the environment's demands. Such distributed control design is widespread across biological systems because it increases survivability and accuracy in certain and uncertain environments. We demonstrate that TLA can provide many advantages over existing approaches, including persistent exploration, adaptive control, explainable temporal behavior, compute efficiency and distributed control. We present two different algorithms for training TLA: (a) Closed-loop control, where the fast controller is trained over a pre-trained slow controller, allowing better exploration for the fast controller and closed-loop control where the fast controller decides whether to "act-or-not" at each timestep; and (b) Partially open loop control, where the slow controller is trained over a pre-trained fast controller, allowing for open loop-control where the slow controller picks a temporally extended action or defers the next n-actions to the fast controller. We evaluated our method on a suite of continuous control tasks and demonstrate the advantages of TLA over several strong baselines.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
在视频中检测和定位动作是实践中的重要问题。最先进的视频分析系统无法有效地回答此类动作查询,因为操作通常涉及对象之间的复杂交互,并且分布在一系列帧中;检测和本地化需要计算昂贵的深神经网络。同样重要的是要考虑整个帧序列以有效地回答查询。在本文中,我们介绍了宙斯,这是一种量身定制的视频分析系统,用于回答动作查询。我们提出了一种新颖的技术,可以使用深厚的强化学习有效地回答这些查询。宙斯训练一种强化学习代理,该学习代理人学会了自适应修改随后发送到动作分类网络的输入视频片段。代理沿三个维度改变输入段 - 采样率,段长度和分辨率。为了满足用户指定的准确性目标,宙斯的查询优化器基于精确感知的总奖励功能来训练代理。在三个不同的视频数据集上的评估表明,宙斯的表现分别优于最新的框架和窗口的过滤技术,分别高达22.1倍和4.7倍。它还始终符合所有查询中用户指定的精度目标。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
超参数优化是机器学习中的一个重要问题,因为它旨在在任何模型中实现最先进的性能。在这一领域取得了巨大努力,例如随机搜索,网格搜索,贝叶斯优化。在本文中,我们将超参数优化过程模拟为马尔可夫决策过程,并用加强学习解决它。提出了一种基于软演员评论家的新型超参数优化方法和分层混合阵列。实验表明,所提出的方法可以在较短的时间内获得更好的超参数。
translated by 谷歌翻译
为了跟踪视频中的目标,当前的视觉跟踪器通常采用贪婪搜索每个帧中目标对象定位,也就是说,将选择最大响应分数的候选区域作为每个帧的跟踪结果。但是,我们发现这可能不是一个最佳选择,尤其是在遇到挑战性的跟踪方案(例如重闭塞和快速运动)时。为了解决这个问题,我们建议维护多个跟踪轨迹并将光束搜索策略应用于视觉跟踪,以便可以识别出更少的累积错误的轨迹。因此,本文介绍了一种新型的基于梁搜索策略的新型多代理增强学习策略,称为横梁。它主要是受图像字幕任务的启发,该任务将图像作为输入,并使用Beam搜索算法生成多种描述。因此,我们通过多个并行决策过程来将跟踪提出作为样本选择问题,每个过程旨在将一个样本作为每个帧的跟踪结果选择。每个维护的轨迹都与代理商相关联,以执行决策并确定应采取哪些操作来更新相关信息。处理所有帧时,我们将最大累积分数作为跟踪结果选择轨迹。在七个流行的跟踪基准数据集上进行了广泛的实验证实了所提出的算法的有效性。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译