具有最小MakeSpan的机器人网络云系统中的调度方法有益,因为系统可以以最快的方式完成分配给它的所有任务。机器人网络云系统可以转换为节点代表具有独立计算功率的硬件的图形,并且边缘代表节点之间的数据传输。关于任务的时间窗口限制是订购任务的自然方式。 MakEspan是节点开始执行其第一个预定任务时的最大时间量,并且当所有节点都完成了上次计划任务时。负载平衡分配和调度可确保第一个节点完成其预定任务时的时间以及所有其他节点完成其预定任务时尽可能短。我们提出了一种新的负载平衡算法,用于任务分配和用最小的MakeSpan调度。理论上,理论上证明了所提出的算法的正确性和显示所获得的结果的现有模拟。
translated by 谷歌翻译
在以并发方式解决团队范围的任务时,多机构系统可能非常有效。但是,如果没有正确的同步,则很难保证合并行为的正确性,例如遵循子任务的特定顺序或同时进行协作。这项工作解决了在复杂的全球任务下,将最低时间的任务计划问题称为线性时间逻辑(LTL)公式。这些任务包括独立本地动作和直接子团队合作的时间和空间要求。提出的解决方案是一种随时随地的算法,结合了对任务分解的基础任务自动机的部分顺序分析,以及用于任务分配的分支和绑定(BNB)搜索方法。提供最小的完成时间的合理性,完整性和最佳性分析。还表明,在搜索范围内持续在时间预算之内,可以迅速达成可行且近乎最佳的解决方案。此外,为了处理在线执行期间任务持续时间和代理失败的波动,提出了适应算法来同步执行状态并动态地重新分配未完成的子任务以保持正确性和最佳性。两种算法通过数值模拟和硬件实验在大规模系统上进行了严格的验证,该算法对几个强基地进行了验证。
translated by 谷歌翻译
我们考虑将订单和机架分配给多个站点的问题,并在机器人辅助Kiva仓库中的每个站测序它们的互连处理流程。涉及问题的各种决定,它与实时紧密相关,必须实时解决,以便易于治疗。但是,利用订单分配与采摘站调度之间的协同作用效益采摘效率。我们开发了一个完整的数学模型,考虑到协同作用,以尽量减少机架访问总数。为了解决这个难以解决的问题,我们开发了一种基于模拟退火和动态规划的高效算法。计算研究表明,在解决方案质量方面,所提出的方法优于实践中使用的规则的策略。此外,结果表明,忽略订单分配政策会导致真实世界大小的实例相当最优的差距。
translated by 谷歌翻译
在本文中,我们考虑了在具有多个自动机器人的系统中分配人类操作员协助的问题。每个机器人都需要完成独立任务,每个任务定义为一系列任务。在执行任务时,机器人可以自主操作,也可以由人类操作员远程执行,以更快地完成任务。我们表明,创建详细时间表的问题使系统的制造量最小化是NP-HARD。我们将问题提出为混合整数线性程序,可用于最佳地解决小到中等大小的问题实例。我们还开发了一种随时随地的算法,该算法利用问题结构来提供对操作员调度问题的快速和高质量解决方案,即使对于更大的问题实例也是如此。我们的关键见解是在贪婪创建的时间表中识别阻止任务,并迭代地删除这些块以提高解决方案的质量。通过数值模拟,我们证明了所提出的算法的好处是一种高于其他贪婪方法的有效且可扩展的方法。
translated by 谷歌翻译
本文为多代理系统开发了一个随机编程框架,在该系统中,任务分解,分配和调度问题同时被优化。该框架可以应用于具有分布式子任务的异质移动机器人团队。例子包括大流行机器人服务协调,探索和救援以及具有异质车辆的交付系统。由于其固有的灵活性和鲁棒性,多代理系统被应用于越来越多的现实问题,涉及异质任务和不确定信息。大多数以前的作品都采用一种将任务分解为角色的独特方法,以后可以将任务分配给代理。对于角色可以变化并且存在多个分解结构的复杂任务,此假设无效。同时,尚不清楚如何在多代理系统设置下系统地量化和优化任务要求和代理能力中的不确定性。提出了复杂任务的表示形式:代理功能表示为随机分布的向量,任务要求通过可推广的二进制函数验证。在目标函数中选择有风险的条件值(CVAR)作为制定强大计划的度量。描述了一种有效的算法来解决该模型,并在两个不同的实践案例中评估了整个框架:在大流行期间的捕获量和机器人服务协调(例如,Covid-19)。结果表明,该框架是可扩展的,可扩展到示例案例的140个代理和40个任务,并提供了低成本计划,以确保成功的概率很高。
translated by 谷歌翻译
使用团队或机器人联盟的任务分配是机器人技术,计算机科学,运营研究和人工智能中最重要的问题之一。在最近的工作中,研究集中在处理复杂的目标和可行性限制之间,这是多机器人任务分配问题的其他变化。在这些方向上有许多重要的研究进展的例子。我们提出了任务分配问题的一般表述,该问题概括了几个经过充分研究的版本。我们的表述包括机器人,任务和其操作周围环境的状态。我们描述问题如何根据可行性约束,目标函数和动态变化信息的水平而变化。此外,我们讨论了有关该问题的现有解决方案方法,包括基于优化的方法和基于市场的方法。
translated by 谷歌翻译
在多机器人系统中,任务对单个机器人的适当分配是非常重要的组成部分。集中式基础架构的可用性可以保证任务的最佳分配。但是,在许多重要的情况下,例如搜索和救援,探索,灾难管理,战场等,以分散的方式将动态任务直接分配给机器人。机器人之间的有效交流在任何这样的分散环境中都起着至关重要的作用。现有的关于分布式多机器人任务分配(MRTA)的作品假设网络可用或使用幼稚的通信范例。相反,在大多数情况下,网络基础架构是不稳定的或不可用的,并且临时网络是唯一的度假胜地。在同步传输(ST)的无线通信协议(ST)的最新发展显示,比在临时网络(例如无线传感器网络(WSN)/物联网(IOT)应用程序中的传统异步传输协议(IOT)应用程序中比传统的基于异步传输的协议更有效。当前的工作是将ST用于MRTA的第一项工作。具体而言,我们提出了一种有效调整基于ST的多对多交互的算法,并将信息交换最小化以达成任务分配的共识。我们通过广泛的基于基于模拟的研究在不同的环境下进行了基于模拟的延迟和能源效率来展示拟议算法的功效。
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
随着智能机器人的广泛渗透,在多种领域,机器人中的同时定位和映射(SLAM)技术在社区中引起了不断的关注。然而,由于机器人的密集图形计算和机器人的有限计算能力之间的性能矛盾,在多个机器人上的合作仍然仍然具有挑战性。虽然传统的解决方案来到功能作为外部计算提供商的强大云服务器,但我们通过实际测量显示数据卸载中的显着通信开销可以防止其实际部署。为了解决这些挑战,本文将新兴边缘计算范例促进到多机器人SLAM中,提出了一种多机器人激光器SLAM系统,该系统专注于在机器人边缘云架构下加速映射施工过程。与传统的多机器人SLAM相比,在机器人上生成图形地图并完全合并它们在云上,recslam开发了一个分层地图融合技术,将机器人的原始数据指向用于实时融合的边缘服务器,然后发送到云端全球合并。为了优化整体管道,引入了一种有效的多机器人SLAM协作处理框架,以便自适应地优化针对异构边缘资源条件的机器人到边缘卸载,同时确保边缘服务器之间的工作量平衡。广泛的评估表明康复伍列可以通过最先进的延迟减少达到39%的处理延迟。此外,在真实场景中开发并部署了概念验证原型,以展示其有效性。
translated by 谷歌翻译
在多代理路径查找(MAPF)问题中,一组在图表上移动的代理必须达到其自身各自的目的地,而无需间间冲突。在实用的MAPF应用中,如自动仓库导航,偶尔有数百个或更多代理商,MAPF必须在终身基础上迭代地解决。这种情景排除了离线计算密集型最佳方法的简单调整;因此,可扩展的子最优算法用于此类设置。理想的可扩展算法适用于可预测计算时间的迭代方案和输出合理的解决方案。对于上述目的,在本研究中,提出了一种具有回溯(PIBT)的优先级继承的新型算法以迭代地解决MAPF。 PIBT依赖于适应性优先级方案,专注于多个代理的相邻运动;因此它可以应用于若干域。我们证明,无论其数量如何,当环境是图形时,所有代理都保证在有限的时间内达到目的地,使得所有相邻节点属于一个简单的周期(例如,双绞线)。实验结果涵盖了各种场景,包括真正的机器人演示,揭示了所提出的方法的好处。即使用数百种代理商,PIBT也会立即产生可接受的解决方案,可以解决其他事实上MAPF方法的大型情况。此外,PIBT在运行时和解决方案质量的自动化仓库中的传送包中的迭代方案上占据了现有方法。
translated by 谷歌翻译
本研究提出了两个新的动态分配算法,将难民和寻求庇护者与东道国内的地理区域相匹配。目前在瑞士的多年来飞行员中实施的第一个,旨在通过最小不和谐的在线分配算法来最大限度地提高难民的平均预期就业水平(或利息的任何衡量结果)。尽管与后视最佳解决方案相比,所提出的算法达到了近乎最佳的预期就业,但它可能会随着时间的推移而导致定期不平衡的分配。这导致了移民资源和代理商的不良工作量低效,他们无法在地方之间移动。为了解决这个问题,第二种算法平衡了改善难民结果的目标,随着时间的推移甚至对每个地方的甚至分配。拟议方法的性能是使用来自美国最大的移民安置机构之一的真正难民移民安置数据进行说明。在此数据集上,我们发现分配平衡算法可以随着时间的推移实现接近完美的平衡,而与纯就业最大化算法相比,预期就业几乎没有损失。此外,分配平衡算法提供了许多辅助益处,包括对未知到达流量的鲁棒性,并通过更大的探索增加弹性。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
我们提出了一种基于新颖的增强学习算法,用于仓库环境中的多机器人任务分配问题。我们将其作为马尔可夫的决策过程提出,并通过一种新颖的深度多代理强化学习方法(称为RTAW)解决了启发性的政策体系结构。因此,我们提出的策略网络使用独立于机器人/任务数量的全局嵌入。我们利用近端政策优化算法进行培训,并使用精心设计的奖励来获得融合的政策。融合的政策确保了不同机器人之间的合作,以最大程度地减少总旅行延迟(TTD),这最终改善了Makepan的大型任务列表。在我们的广泛实验中,我们将RTAW算法的性能与最先进的方法进行了比较,例如近视皮卡最小化(Greedy)和基于遗憾的基于不同导航方案的基线。在TTD中,我们在TTD中显示了最高14%(25-1000秒)的情况,这些方案具有数百或数千个任务,用于不同挑战性的仓库布局和任务生成方案。我们还通过在模拟中显示高达$ 1000 $的机器人的性能来证明我们的方法的可扩展性。
translated by 谷歌翻译
在异构机器人网络上进行计算负载共享是一个有希望的方法,可以将机器人能力和效率作为极端环境中的团队提高。然而,在这种环境中,通信链路可以是间歇性的,并且与云或因特网的连接可能是不存在的。在本文中,我们介绍了用于多机器人系统的通信感知,计算任务调度问题,并提出了整数线性程序(ILP),该程序(ILP)优化了异构机器人网络中的计算任务分配,占网络机器人的计算能力对于可用(和可能的时变)通信链接。我们考虑调度由依赖关系图建模的一组相互依赖的必需任务和可选任务。我们为共享世界,分布式系统提供了一项备份的调度架构。我们验证了ILP制定和不同计算平台中的分布式实现,并在模拟场景中,偏向于月球或行星探索方案。我们的研究结果表明,与没有计算负载共享的类似系统相比,所提出的实施方式可以优化提高时间表以允许三倍增加所执行的奖励任务的数量(例如,科学测量)。
translated by 谷歌翻译
事件处理是动态和响应互联网(物联网)的基石。该领域的最近方法基于代表性状态转移(REST)原则,其允许将事件处理任务放置在遵循相同原理的任何设备上。但是,任务应在边缘设备之间正确分布,以确保公平资源利用率和保证无缝执行。本文调查了深入学习的使用,以公平分配任务。提出了一种基于关注的神经网络模型,在不同场景下产生有效的负载平衡解决方案。所提出的模型基于变压器和指针网络架构,并通过Advantage演员批评批评学习算法训练。该模型旨在缩放到事件处理任务的数量和边缘设备的数量,不需要重新调整甚至再刷新。广泛的实验结果表明,拟议的模型在许多关键绩效指标中优于传统的启发式。通用设计和所获得的结果表明,所提出的模型可能适用于几个其他负载平衡问题变化,这使得该提案是由于其可扩展性和效率而在现实世界场景中使用的有吸引力的选择。
translated by 谷歌翻译
机器人正在集成更大尺寸的模型以丰富功能并提高准确性,从而导致控制力计算压力。因此,机器人在计算功率和电池容量中遇到瓶颈。雾或云机器人技术是解决这些问题的最期待的理论之一。云机器人技术的方法已从系统级到节点级别开发。但是,当前的节点级系统不够灵活,无法动态适应变化的条件。为了解决这个问题,我们提出了Elasticros,该Elasticros将当前的节点级系统演变为算法级别。 Elasticros基于ROS和ROS2。对于FOG和Cloud Robotics,它是第一个具有算法级协作计算的机器人操作系统。 Elasticros开发弹性协作计算,以实现对动态条件的适应性。协作计算算法是Elasticros的核心和挑战。我们抽象问题,然后提出一种称为Elasaction的算法以解决。这是一种基于在线学习的动态行动决策算法,它决定了机器人和服务器的合作方式。该算法会动态更新参数,以适应机器人当前所在的条件的变化。它根据配置将计算任务的弹性分配到机器人和服务器上。此外,我们证明了弹性的遗憾上限是sublinear,它保证了其收敛性,因此使Elasticros在其弹性上保持稳定。最后,我们对机器人技术的常见任务进行了Elasticros进行实验,包括SLAM,GRASPING和HUMAN-OBOT对话,然后在延迟,CPU使用和功耗中测量其性能。算法级弹性弹性的性能明显优于当前的节点级系统。
translated by 谷歌翻译
培训深神经网络(DNNS)在企业和云数据中心都广受欢迎。现有的DNN培训调度程序将GPU视为主要资源,并分配其他资源,例如CPU和内存与作业要求的GPU数量成正比。不幸的是,这些调度程序不考虑作业对CPU,内存和存储资源分配的敏感性的影响。在这项工作中,我们提出了Synergy,这是一种对共享GPU群集的资源敏感调度程序。通过乐观的分析,协同作用侵犯了DNN对不同资源的敏感性;某些工作可能会从GPU育儿分配中受益更多,而某些工作可能不会受到GPU育儿分配的影响。 Synergy使用新的近乎最佳的在线算法在共享的多租户集群上安排的一组作业进行了多余的工作量感知作业。我们的实验表明,与传统的GPU育儿计划相比,工作量感知的CPU和内存分配可以提高平均JCT高达3.4倍。
translated by 谷歌翻译
Coflow是最近提出的网络抽象,以帮助提高数据并行计算作业的通信性能。在多阶段作业中,每个作业包括多个Coflows,由定向的非循环图(DAG)表示。有效地调度Coflows对于提高数据中心中的数据并行计算性能至关重要。与手动调度启发式相比,现有的工作Deepweave [1]利用强化学习(RL)框架自动生成高效的CoFlow调度策略。它采用图形神经网络(GNN)来编码一组嵌入向量中的作业信息,并将包含整个作业信息的平面嵌入载体馈送到策略网络。然而,这种方法的可扩展性差,因为它无法应对由任意尺寸和形状的DAG表示的作业,这需要大型策略网络来处理难以训练的高维嵌入载体。在本文中,我们首先利用了一条定向的无循环图神经网络(DAGNN)来处理输入并提出一种新型流水线-DAGNN,其可以有效地加速DAGNN的特征提取过程。接下来,我们馈送由可调度的Coflows组成的嵌入序列,而不是将所有Coflows的平面嵌入到策略网络上,并输出优先级序列,这使得策略网络的大小仅取决于特征的维度而不是产品的维度作业的DAG中的节点数量和节点数量,提高优先级调度策略的准确性,我们将自我注意机制纳入深度RL模型,以捕获嵌入序列不同部分之间的交互,以使输出优先级进行输出优先级分数相关。基于此模型,我们开发了一种用于在线多级作业的Coflow调度算法。
translated by 谷歌翻译
物流运营商最近提出了一项技术,可以帮助降低城市货运分销中的交通拥堵和运营成本,最近提出了移动包裹储物柜(MPLS)。鉴于他们能够在整个部署领域搬迁,因此他们具有提高客户可访问性和便利性的潜力。在这项研究中,我们制定了移动包裹储物柜问题(MPLP),这是位置路由问题(LRP)的特殊情况,该案例确定了整天MPL的最佳中途停留位置以及计划相应的交付路线。开发了基于混合Q学习网络的方法(HQM),以解决所得大问题实例的计算复杂性,同时逃脱了本地Optima。此外,HQM与全球和局部搜索机制集成在一起,以解决经典强化学习(RL)方法所面临的探索和剥削困境。我们检查了HQM在不同问题大小(最多200个节点)下的性能,并根据遗传算法(GA)进行了基准测试。我们的结果表明,HQM获得的平均奖励比GA高1.96倍,这表明HQM具有更好的优化能力。最后,我们确定有助于车队规模要求,旅行距离和服务延迟的关键因素。我们的发现概述了MPL的效率主要取决于时间窗口的长度和MPL中断的部署。
translated by 谷歌翻译
There is significant interest in deploying machine learning algorithms for diagnostic radiology, as modern learning techniques have made it possible to detect abnormalities in medical images within minutes. While machine-assisted diagnoses cannot yet reliably replace human reviews of images by a radiologist, they could inform prioritization rules for determining the order by which to review patient cases so that patients with time-sensitive conditions could benefit from early intervention. We study this scenario by formulating it as a learning-augmented online scheduling problem. We are given information about each arriving patient's urgency level in advance, but these predictions are inevitably error-prone. In this formulation, we face the challenges of decision making under imperfect information, and of responding dynamically to prediction error as we observe better data in real-time. We propose a simple online policy and show that this policy is in fact the best possible in certain stylized settings. We also demonstrate that our policy achieves the two desiderata of online algorithms with predictions: consistency (performance improvement with prediction accuracy) and robustness (protection against the worst case). We complement our theoretical findings with empirical evaluations of the policy under settings that more accurately reflect clinical scenarios in the real world.
translated by 谷歌翻译