语音扭曲是一个长期存在的问题,它降低了受过监督训练的语音处理模型的性能。现在是时候提高语音处理模型的鲁棒性,以在遇到语音扭曲时获得良好的性能,而不会伤害干净的语音上的原始表现。在这项工作中,我们建议通过域对抗训练(DAT)提高语音处理模型的鲁棒性。我们根据五个不同的语音处理任务的精湛框架进行了实验。如果我们并不总是对语音数据的失真类型有所了解,我们分析了二进制域和多域设置,其中前者将所有扭曲的语音视为一个域,而后者将不同的扭曲视为不同的域。与监督训练方法相反,我们在目标域中获得了有希望的结果,在这些目标域中,语音数据因不同的扭曲而扭曲,包括在测试过程中引入的新看不见的扭曲。
translated by 谷歌翻译
一个名为语音处理通用性能基准(Superb)的排行榜,它旨在基准测试各种下游语音任务的共享自我监督学习(SSL)语音模型的性能,并推动了研究用于语音表示学习。 SuperB演示语音SSL上游模型通过仅限最小的调整来提高各种下游任务的性能。由于自我监督学习上游模型的范式,其次是下游任务,在语音界引起更多关注,表征此类范例的对抗性稳健性是高优先级的。在本文中,我们首次尝试在零知识对手和有限知识对手的袭击下调查此类范例的对抗脆弱性。实验结果表明,Superb提出的范例严重易受有限的知识对手的影响,零知识对手产生的攻击是可转移性的。 XAB测试验证了制作的对抗性攻击的难以察觉。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
Through solving pretext tasks, self-supervised learning leverages unlabeled data to extract useful latent representations replacing traditional input features in the downstream task. In audio/speech signal processing, a wide range of features where engineered through decades of research efforts. As it turns out, learning to predict such features (a.k.a pseudo-labels) has proven to be a particularly relevant pretext task, leading to useful self-supervised representations which prove to be effective for downstream tasks. However, methods and common practices for combining such pretext tasks for better performance on the downstream task have not been explored and understood properly. In fact, the process relies almost exclusively on a computationally heavy experimental procedure, which becomes intractable with the increase of the number of pretext tasks. This paper introduces a method to select a group of pretext tasks among a set of candidates. The method we propose estimates calibrated weights for the partial losses corresponding to the considered pretext tasks during the self-supervised training process. The experiments conducted on automatic speech recognition, speaker and emotion recognition validate our approach, as the groups selected and weighted with our method perform better than classic baselines, thus facilitating the selection and combination of relevant pseudo-labels for self-supervised representation learning.
translated by 谷歌翻译
随着自动语音处理(ASR)系统越来越好,使用ASR输出越来越令于进行下游自然语言处理(NLP)任务。但是,很少的开源工具包可用于在不同口语理解(SLU)基准上生成可重复的结果。因此,需要建立一个开源标准,可以用于具有更快的开始进入SLU研究。我们展示了Espnet-SLU,它旨在在一个框架中快速发展口语语言理解。 Espnet-SLU是一个项目内部到结束语音处理工具包,ESPNET,它是一个广泛使用的开源标准,用于各种语音处理任务,如ASR,文本到语音(TTS)和语音转换(ST)。我们增强了工具包,为各种SLU基准提供实现,使研究人员能够无缝混合和匹配不同的ASR和NLU模型。我们还提供预磨损的模型,具有集中调谐的超参数,可以匹配或甚至优于最新的最先进的性能。该工具包在https://github.com/espnet/espnet上公开提供。
translated by 谷歌翻译
本文介绍了一种新的鉴别器受约束的最佳运输网络(DOTN),其对语音增强(SE)执行无监督的域适应,这是语音处理中的重要回归任务。 DOTN旨在通过利用来自源域的知识来估计目标域中噪声语音的清洁参考。据报道,培训和测试数据之间的域移位是在不同领域中学习问题的障碍。虽然丰富的文献存在于对分类的无监督域适应上,但提出的方法,尤其是回归,仍然稀缺,并且通常取决于输入数据的附加信息。所提出的DOTN方法通过生成的对抗性框架来说,从数学分析中统治最佳运输(OT)理论,以帮助评估目标域中的连续标签。在两个SE任务上的实验结果表明,通过延长经典OT制剂,我们提出的DOTN以纯粹无监督的方式优于先前的对抗域适应框架。
translated by 谷歌翻译
通过首先通过自动语音识别(ASR)转换话语,然后将输出馈送到基于文本的模型,通常通过转录语言理解(SLU)任务来解决。自我监督代表学习的最新进展旨在改善ASR组件。我们调查了是否对演讲的代表性学习已经成熟,以取代SLU中的ASR。我们将学位语音特征与Wav2Vec 2.0,最先进的ASR成绩单以及基于新型语音的名称实体识别任务的输入,是真实世界紧急呼叫和两个基于语音的命名实体识别任务的输入。现有的SLU基准。我们表明,学习的语音功能优于三种分类任务的ASR成绩单。对于机器翻译,ASR成绩单仍然是更好的选择。我们突出了Wav2VEC 2.0表示的内在稳健性,以失控的单词作为更好的性能的关键。
translated by 谷歌翻译
毒性言论,也被称为仇恨言论,被认为是今天批评在线社交媒体的重要问题之一。最近关于有毒语音检测的工作受到文本的模型,没有现有的毒性检测从口语中的出口检测。在本文中,我们提出了一种从口语中检测毒性的新口语处理任务。我们介绍了排毒,这是英语演讲的第一个公开的毒性注释数据集,来自各种公开可用的语音数据库,包括超过200万个话语。最后,我们还提供了对毒性注释的语音语料库的分析可以帮助促进E2E模型的发展,更好地捕获语音中的各种韵律线索,从而提高了口语的毒性分类。
translated by 谷歌翻译
在最近的研究中,自我监管的预训练模型倾向于在转移学习中优于监督的预训练模型。特别是,可以在语音应用中使用语音级语音表示的自我监督学习(SSL),这些语音应用需要歧视性表示话语中一致属性的表示:说话者,语言,情感和年龄。现有的框架级别的自我监督语音表示,例如WAV2VEC,可以用作带有汇总的话语级表示,但这些模型通常很大。也有SSL技术可以学习话语级的表示。最成功的方法之一是一种对比方法,它需要负采样:选择替代样品与当前样品(锚)对比。但是,这并不确保所有负面样本属于与没有标签的锚类别不同的​​类别。本文应用了一种非对抗性的自我监督方法来学习话语级的嵌入。我们对没有标签(Dino)从计算机视觉到语音进行了调整,没有标签(Dino)。与对比方法不同,Dino不需要负抽样。我们将Dino与受到监督方式训练的X-Vector进行了比较。当转移到下游任务(说话者验证,语音情绪识别(SER)和阿尔茨海默氏病检测)时,Dino的表现优于X-Vector。我们研究了转移学习过程中几个方面的影响,例如将微调过程分为步骤,块长度或增强。在微调过程中,首先调整最后一个仿射层,然后整个网络一次超过微调。使用较短的块长度,尽管它们产生了更多不同的输入,但并不一定会提高性能,这意味着至少需要具有特定长度的语音段才能为每个应用程序提高性能。增强对SER有帮助。
translated by 谷歌翻译
在过去的十年中,通过深度学习方法取得了杰出的结果,对单一语言的语音情感识别(SER)取得了显着的结果。但是,由于(i)源和目标域分布之间的巨大差异,(ii)少数标记和许多未标记的新语言的话语,跨语言SER仍然是现实世界中的挑战。考虑到以前的方面,我们提出了一种半监督学习方法(SSL)方法,用于跨语性情感识别时,当有一些新语言的标签可用时。基于卷积神经网络(CNN),我们的方法通过利用伪标记的策略来适应新语言。特别是,研究了使用硬和软伪标签方法的使用。我们在源和新语言上均独立于语言的设置中彻底评估了该方法的性能,并在属于不同语言菌株的五种语言中显示出其稳健性。
translated by 谷歌翻译
Large speech emotion recognition datasets are hard to obtain, and small datasets may contain biases. Deep-net-based classifiers, in turn, are prone to exploit those biases and find shortcuts such as speaker characteristics. These shortcuts usually harm a model's ability to generalize. To address this challenge, we propose a gradient-based adversary learning framework that learns a speech emotion recognition task while normalizing speaker characteristics from the feature representation. We demonstrate the efficacy of our method on both speaker-independent and speaker-dependent settings and obtain new state-of-the-art results on the challenging IEMOCAP dataset.
translated by 谷歌翻译
以前的研究已经证实了利用明晰度信息达到改善的语音增强(SE)性能的有效性。通过使用铰接特征的地点/方式增强原始声学特征,可以引导SE过程考虑执行增强时输入语音的剖视特性。因此,我们认为关节属性的上下文信息应包括有用的信息,并可以进一步利用不同的语言。在这项研究中,我们提出了一个SE系统,通过优化英语和普通话的增强演讲中的上下文清晰度信息来提高其性能。我们通过联合列车与端到端的自动语音识别(E2E ASR)模型进行联合列车,预测广播序列(BPC)而不是单词序列的序列。同时,开发了两种培训策略,以基于基于BPC的ASR:多任务学习和深度特征培训策略来培训SE系统。 Timit和TMhint DataSet上的实验结果证实了上下文化学信息促进了SE系统,以实现比传统声学模型(AM)更好的结果。此外,与用单声道ASR培训的另一SE系统相比,基于BPC的ASR(提供上下文化学信息)可以在不同的信噪比(SNR)下更有效地改善SE性能。
translated by 谷歌翻译
本文调查了视听扬声器表示的自我监督的预训练,其中显示了视觉流,显示说话者的口腔区域与语音一起用作输入。我们的研究重点是视听隐藏单元BERT(AV-HUBERT)方法,该方法是最近开发的通用音频语音训练前训练框架。我们进行了广泛的实验,以探测预训练和视觉方式的有效性。实验结果表明,AV-Hubert可以很好地概括与说话者相关的下游任务,从而使标签效率提高了大约10倍的仅10倍,仅音频和视听扬声器验证。我们还表明,结合视觉信息,甚至仅仅是唇部区域,都大大提高了性能和噪声稳健性,在清洁条件下将EER降低了38%,在嘈杂的条件下将EER降低了75%。
translated by 谷歌翻译
Modern speech recognition systems exhibits rapid performance degradation under domain shift. This issue is especially prevalent in data-scarce settings, such as low-resource languages, where diversity of training data is limited. In this work we propose M2DS2, a simple and sample-efficient finetuning strategy for large pretrained speech models, based on mixed source and target domain self-supervision. We find that including source domain self-supervision stabilizes training and avoids mode collapse of the latent representations. For evaluation, we collect HParl, a $120$ hour speech corpus for Greek, consisting of plenary sessions in the Greek Parliament. We merge HParl with two popular Greek corpora to create GREC-MD, a test-bed for multi-domain evaluation of Greek ASR systems. In our experiments we find that, while other Unsupervised Domain Adaptation baselines fail in this resource-constrained environment, M2DS2 yields significant improvements for cross-domain adaptation, even when a only a few hours of in-domain audio are available. When we relax the problem in a weakly supervised setting, we find that independent adaptation for audio using M2DS2 and language using simple LM augmentation techniques is particularly effective, yielding word error rates comparable to the fully supervised baselines.
translated by 谷歌翻译
Spoken language understanding (SLU) is a task aiming to extract high-level semantics from spoken utterances. Previous works have investigated the use of speech self-supervised models and textual pre-trained models, which have shown reasonable improvements to various SLU tasks. However, because of the mismatched modalities between speech signals and text tokens, previous methods usually need complex designs of the frameworks. This work proposes a simple yet efficient unsupervised paradigm that connects speech and textual pre-trained models, resulting in an unsupervised speech-to-semantic pre-trained model for various tasks in SLU. To be specific, we propose to use unsupervised automatic speech recognition (ASR) as a connector that bridges different modalities used in speech and textual pre-trained models. Our experiments show that unsupervised ASR itself can improve the representations from speech self-supervised models. More importantly, it is shown as an efficient connector between speech and textual pre-trained models, improving the performances of five different SLU tasks. Notably, on spoken question answering, we reach the state-of-the-art result over the challenging NMSQA benchmark.
translated by 谷歌翻译
基于音频的自动语音识别(ASR)在嘈杂的环境中显着降低,并且特别容易受到干扰语音的影响,因为模型无法确定要转录的扬声器。视听语音识别(AVSR)系统通过将音频流与不变噪声不变的可视信息补充,帮助模型对所需扬声器的视觉信息来提高鲁棒性。但是,以前的AVSR工作仅关注监督学习设置;因此,通过可用的标记数据量阻碍了进度。在这项工作中,我们提出了一个自我监督的AVSR框架,建立在视听休伯特(AV-HUBERT),是最先进的视听语音表示学习模型。在最大可用的AVSR基准数据集LRS3中,我们的方法在存在的情况下使用少于10%的标签数据(433HR与30HR)之前的最先进(28.0%与14.1%)优于〜50%(28.0%vs.14.1%)禁止噪声,平均减少了基于音频模型的WER以上超过75%(25.8%与5.8%)。
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
自我监督的语音表示,如Wav2Vec 2.0和Hubert正在自动语音识别(ASR)中进行革命性进展。但是,未经监督模型没有完全证明在ASR以外的任务中产生更好的性能。在这项工作中,我们探索了Wav2Vec 2.0和Hubert预先训练模型的部分微调和整个微调,适用于三个非ASR语音任务:语音情感识别,发言者验证和口语理解。我们还比较带有/没有ASR微调的预训练型号。通过简单的下游框架,最佳分数对IEMocap上的语音情感识别的加权精度达到79.58%,扬声器验证对voxcereB1的2.36%,意图分类的准确性为87.51%,Slotp的槽填充的75.32%f1,因此为这三个基准设置新的最先进,证明了微调Wave2VEC 2.0和Hubert模型可以更好地学习韵律,语音印刷和语义表示。
translated by 谷歌翻译
在我们以前的工作中,我们提出了一个歧视性自动编码器(DCAE)进行语音识别。 DCAE将两个训练方案结合在一起。首先,由于DCAE的目标是学习编码器映射,因此重建语音和输入语音之间的平方误差被最小化。其次,在代码层中,基于框架的语音嵌入是通过最小化地面真相标签和预测的Triphone-State分数之间的分类跨熵来获得的。 DCAE是根据Kaldi工具包开发的,通过将各种TDNN模型视为编码器。在本文中,我们进一步提出了三个新版本的DCAE。首先,使用了一个新的目标函数,该函数使用了地面真相和预测的Triphone-State序列之间的分类跨膜和相互信息。所得的DCAE称为基于链的DCAE(C-DCAE)。为了应用于强大的语音识别,我们将C-DCAE进一步扩展到层次结构和平行结构,从而导致HC-DCAE和PC-DCAE。在这两个模型中,重建的嘈杂语音与输入嘈杂语音以及增强语音和参考清洁语音之间的误差之间的误差都归功于目标函数。 WSJ和Aurora-4 Corpora的实验结果表明,我们的DCAE模型优于基线系统。
translated by 谷歌翻译
自我监督的预训练可以有效地改善低资源自动语音识别(ASR)的性能。但是,现有的自我监督的预训练是任务不合时宜的,即可以应用于各种下游任务。尽管它扩大了其应用的范围,但预训练模型的容量并未完全用于ASR任务,并且学习的表示形式可能对ASR不最佳。在这项工作中,为了为低资源ASR构建更好的预训练模型,我们提出了一种称为WAV2VEC-S的预训练方法,我们使用特定于任务的半监督预培训来完善自我监督的预培训因此,ASR任务的预训练模型更有效地利用了预培训模型的能力来生成针对ASR的任务特定表示。实验表明,与WAV2VEC 2.0相比,WAV2VEC-S仅需要训练前时间的边际增长,但可以显着改善在内域,跨域和跨语言数据集上的ASR性能。 1H和10H微调分别为24.5%和6.6%。此外,我们表明,半监督的预训练可以通过规范相关分析来弥合自我监管的预训练模型与相应的微调模型之间的表示差距。
translated by 谷歌翻译