随着第五代(5G)无线系统在全球范围内收集动力的部署,6G的可能技术正在积极的研究讨论下。特别是,机器学习(ML)在6G中的作用有望增强和帮助新兴应用,例如虚拟和增强现实,车辆自治和计算机视觉。这将导致大量的无线数据流量包括图像,视频和语音。 ML算法通过位于云服务器上的学习模型来处理这些分类/识别/估计。这需要将数据从边缘设备无线传输到云服务器。与识别步骤分开处理的渠道估计对于准确的学习绩效至关重要。为了结合通道和ML数据的学习,我们引入了隐式渠道学习以执行ML任务而不估计无线通道。在这里,ML模型通过通道腐败的数据集训练,代替名义数据。没有通道估计,该提出的方法在各种情况(例如毫米波和IEEE 802.11p车辆通道)方面的图像和语音分类任务上显示了大约60%的改善。
translated by 谷歌翻译
智能反射表面(IRS)最近对无线通信受到了极大的关注,因为它降低了常规大阵列的硬件复杂性,物理尺寸,重量和成本。但是,IRS的部署需要处理基站(BS)和用户之间的多个渠道链接。此外,BS和IRS梁形器需要关节设计,其中必须迅速重新配置IRS元素。数据驱动的技术(例如深度学习(DL))对于应对这些挑战至关重要。DL的较低计算时间和无模型性质使其与数据瑕疵和环境变化有关。在物理层上,DL已被证明可用于IRS信号检测,通道估计以及使用诸如监督,无监督和强化学习等体系结构进行主动/被动光束成型。本文提供了这些技术,用于设计基于DL的IRS辅助无线系统。
translated by 谷歌翻译
机器学习(ML)最近在车辆网络中采用了用于自动驾驶,道路安全预测和车辆对象检测等应用,这是由于其无模型的特性,从而允许自适应快速响应。但是,这些ML应用程序中的大多数采用集中学习(CL),这为参数服务器和车辆边缘设备之间的数据传输带来了重要的开销。联合学习(FL)框架最近被引入为有效的工具,目的是通过传输模型更新而不是整个数据集来减少传输开销,同时通过传输来实现隐私。在本文中,我们调查了FL在车辆网络应用中的用法来开发智能运输系统。我们提供了有关FL对基于ML的车辆应用的可行性的全面分析,并通过利用基于图像的数据集作为案例研究来研究对象检测。然后,我们从学习的角度(即数据标签和模型培训)以及从通信的角度(即数据速率,可靠性,传输开销,隐私和资源管理)确定了主要挑战。最后,我们重点介绍了车辆网络中FL的未来研究指示。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
混合模拟和数字波束成形收发器在解决下一代毫米波(MM波)大规模MIMO(多输入多输出)系统中的昂贵硬件和高训练开销的挑战。然而,在混合架构中缺乏完全数字波束成形和MM波的短相干时间对信道估计施加了额外的约束。在解决这些挑战的前提是,主要集中在窄带信道上,其中采用基于优化的或贪婪算法来导出混合波束形成器。在本文中,我们介绍了用于频率选择,宽带MM波系统的信道估计和混合波束形成的深度学习(DL)方法。特别地,我们考虑大规模的MIMO正交频分复用(MIMO-OFDM)系统,并提出包括卷积神经网络(CNN)的三种不同的DL框架,其接受接收信号的原始数据作为输入和产生信道估计和混合波束形成器在输出。我们还介绍了离线和在线预测方案。数值实验表明,与目前的最先进的优化和DL方法相比,我们的方法提供了更高的频谱效率,较小的计算成本和更少的导频信号,以及对接收的导频数据中的偏差较高的差异,损坏的信道矩阵和传播环境。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
本文解决了Terahertz(THZ)通道估计中的两个主要挑战:光束切割现象,即由于频率独立的模拟束缚器和计算复杂性,由于使用超质量数量,因此由于频率非依赖性的模拟光束器和计算复杂性。已知数据驱动的技术可以减轻此问题的复杂性,但通常需要将数据集从用户传输到中央服务器,从而带来了巨大的通信开销。在这项工作中,我们采用联合学习(FL),其中用户仅传输模型参数,而不是整个数据集,以供THZ频道估计来提高通信效率。为了准确估算横梁切开,我们提出了Beamspace支持对准技术,而无需其他硬件。与以前的作品相比,我们的方法提供了更高的频道估计准确性,以及大约$ 68 $ $ 68 $倍的通信开销。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
5G建筑和深度学习的融合在无线通信和人工智能领域都获得了许多研究兴趣。这是因为深度学习技术已被确定为构成5G体系结构的5G技术的潜在驱动力。因此,关于5G架构和深度学习的融合进行了广泛的调查。但是,大多数现有的调查论文主要集中于深度学习如何与特定的5G技术融合,因此,不涵盖5G架构的全部范围。尽管最近有一份调查文件似乎很强大,但对该论文的评论表明,它的结构不佳,无法专门涵盖深度学习和5G技术的收敛性。因此,本文概述了关键5G技术和深度学习的融合。讨论了这种融合面临的挑战。此外,还讨论了对未来6G体系结构的简要概述,以及如何与深度学习进行融合。
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
在过去的十年中,水下事物的互联网(IOUT)在环境监测和勘探,国防应用等应用程序中取得了迅速的动力。传统的IOUT系统使用机器学习(ML)方法,这些方法满足了可靠性,效率和及时性的需求。但是,对进行的各种研究的广泛审查突出了IOUT框架中数据隐私和安全性的重要性,这是实现任务关键应用程序中预期结果的主要因素。联邦学习(FL)是一个有安全的,分散的框架,是机器学习的最新发展,它将有助于满足IOUT中常规ML方法所面临的挑战。本文概述了FL在IOUT中的各种应用,其挑战,开放问题并指示未来研究前景的方向。
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
通过增加数据驱动应用的渗透率和扩散的推动,新一代无线通信,由人工智能增强的第六代(6G)移动系统(AI)引起了大量的研究兴趣。在6G的各种候选技术中,低地球轨道(LEO)卫星具有普遍存在无处不在的无可所述的特征。然而,卫星通信(SATCOM)的成本仍然很高,而相对于地面移动网络的对应物。为了支持具有智能自适应学习的大型互联设备,减少卫星的昂贵流量,我们在基于Leo的卫星通信网络中提出联合学习(FL)。我们首先审查最先进的基于LEO的SATCOM和相关机器学习(ML)技术,然后分析与卫星网络相结合的四种可能的方式。通过模拟和结果评估所提出的策略的学习性能,表明FL的计算网络提高了通信开销和延迟的性能。最后,我们沿着这项研究方向讨论了未来的研究主题。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译