由单一头皮电极(加上参考电极)捕获的时间序列用于预测癫痫发作的敏感性。时间序列进行预处理,分割,每个节段使用三种不同的已知方法转化为图像:复发图,Gramian Angular Field,Markov Transition Firt Field。通过平均CNN的SoftMax层的输出来计算,在未来预定义的时间窗口中发生癫痫发作的可能性与通常考虑分类层输出的情况不同。通过阈值这种可能性,癫痫发作的预测具有更好的性能。有趣的是,对于几乎每个患者,最佳阈值与50%不同。结果表明,该技术可以预测一些癫痫发作和患者的良好结果。但是,需要更多的测试,即更多的患者和更多的癫痫发作,以更好地了解该技术的真正潜力。
translated by 谷歌翻译
癫痫是在4000年全球出现回来的最常见的神经系统疾病之一。这几天它会影响大约5000万人的人。这种疾病的特征是复发癫痫发作。在过去的几十年里,可用于癫痫发作控制的治疗方法已经提高了很多关于医学技术领域的进步。脑电图(EEG)是一种广泛使用的技术,用于监测大脑活动,广泛流行的癫痫发作区域检测。它在手术前进行,并且还在在神经刺激装置中可用的时间操作预测癫痫发作。但在大多数情况下,视觉检查是通过神经病学家进行的,以检测和分类疾病的模式,但这需要大量的域名知识和经验。这一切依次对神经外部产生压力,并导致时间浪费,并降低了他们的准确性和效率。需要一些在信息技术领域的自动化系统,例如在深度学习中使用神经网络,可以帮助神经根学家。在本文中,提出了一种模型,可提供98.33%的准确性,可用于开发自动化系统。发达的系统将显着帮助神经科学家的表现。
translated by 谷歌翻译
如今,提出了几种深度学习方法来应对癫痫发作预测的挑战。但是,由于其大型硬件和相应的高功率消耗,这些方法仍然无法作为可植入或有效的可穿戴设备的一部分实现。他们通常需要复杂的功能提取过程,用于存储高精度参数的大存储器和复杂的算术计算,从而大大增加了所需的硬件资源。此外,可用的预测性能差,因为它们直接从图像识别应用程序中采用网络体系结构无法准确考虑EEG信号的特征。我们在本文中提出了一个适合二进制卷积神经网络(BSDCNN)的硬件友好网络,用于癫痫发作预测。 BSDCNN利用1D卷积内核来提高预测性能。除了第一层外,所有参数均已二进制以减少所需的计算和存储。在美国癫痫社会癫痫发作预测挑战(AES)数据集和CHB-MIT方面,曲线,灵敏度和虚假预测率的总面积达到0.915、89.26%,0.117/h和0.970,94.69%,0.095/h。所提出的体系结构的表现优于最新作品,同时提供了7.2和25.5倍的参数和计算大小。
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
由于数据保护法和机构内的官方程序,在实践中很难在机构之间共享医疗数据。因此,大多数现有的算法经过相对较小的脑电图(EEG)数据集的培训,这可能会损害预测准确性。在这项工作中,我们通过将公开可用的数据集分配到代表各个机构中数据的不相交集中来共享数据时模拟了一个情况。我们建议在每个机构中培训一个(本地)检测器,并将其个人预测汇总为最终预测。比较了四个集合计划,即多数投票,平均值,加权平均值和Dawid-Skene方法。该方法仅使用EEG通道的一个子集在独立的数据集上进行了验证。当每个机构提供足够数量的数据时,合奏的精度与对所有数据进行训练的单个检测器相当。加权平均聚合方案表现出最佳性能,当局部检测器接近对所有可用数据训练的单个检测器的性能时,它只能用DAWID-SKENE方法略有优于。
translated by 谷歌翻译
癫痫发作是最重要的神经障碍之一,其早期诊断将有助于临床医生为患者提供准确的治疗方法。脑电图(EEG)信号广泛用于癫痫癫痫发作检测,其提供了关于大脑功能的实质性信息的专家。本文介绍了采用模糊理论和深层学习技术的新型诊断程序。所提出的方法在Bonn大学数据集上进行了评估,具有六个分类组合以及弗赖堡数据集。可以使用可调谐Q小波变换(TQWT)来将EEG信号分解为不同的子带。在特征提取步骤中,从TQWT的不同子带计算了13个不同的模糊熵,并且计算它们的计算复杂性以帮助研究人员选择各种任务的最佳集合。在下文中,采用具有六层的AutoEncoder(AE)用于减少维数。最后,标准自适应神经模糊推理系统(ANFIS)以及其具有蚱蜢优化算法(ANFIS-GOA),粒子群优化(ANFIS-PSO)和育种群优化(ANFIS-BS)方法的变体分类。使用我们所提出的方法,ANFIS-BS方法在弗赖堡数据集上分为两类分为两类和准确度,在两类分类中获得99.46%的准确性,以及弗赖堡数据集的99.28%,达到最先进的两个人的表演。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
睡眠呼吸暂停(SA)是一种睡眠障碍,其特征是打s和慢性睡眠,这可能导致严重的疾病,例如高血压,心力衰竭和心肌病(心脏肌肉组织的增大)。心电图(ECG)在识别SA中起着至关重要的作用,因为它可能显示出异常的心脏活性。对基于ECG的SA检测的最新研究集中在功能工程技术上,这些技术从多铅ECG信号中提取特定特征,并将其用作分类模型输入。在这项研究中,提出了一种基于S峰检测的新型特征提取方法,以增强使用单铅ECG对相邻SA段的检测。特别是,使用单个铅(V2)收集的ECG特征用于识别SA发作。在提取的功能上,对CNN模型进行了训练以检测SA。实验结果表明,所提出的方法从单铅ECG数据中检测到SA比现有的最新方法更准确,具有91.13%的分类精度,敏感性为92.58%和88.75%的特异性。此外,与S峰相关的特征的进一步使用可以提高分类准确性0.85%。我们的发现表明,提出的机器学习系统有可能成为检测SA发作的有效方法。
translated by 谷歌翻译
由于癫痫发生是由于大脑的异常活性引起的,因此癫痫发作会影响您的大脑处理的任何过程。癫痫发作的一些体征和症状包括混乱,异常凝视以及快速,突然和无法控制的手动运动。癫痫发作检测方法涉及神经检查,血液检查,神经心理学检查和神经影像学方法。其中,神经影像学的方式受到了专业医生的极大关注。一种促进癫痫发作准确,快速诊断的方法是基于深度学习(DL)和神经成像方式采用计算机辅助诊断系统(CADS)。本文研究了利用神经影像学方式利用用于癫痫发作检测和预测的DL方法的全面概述。首先,讨论了用于使用神经影像模式的癫痫发作检测和预测的基于DL的CAD。此外,还包括了用于癫痫发作检测和预测的各种数据集的描述,预处理算法和DL模型。然后,已经介绍了有关康复工具的研究,其中包含脑部计算机接口(BCI),可植入,云计算,物联网(IoT),在现场可编程栅极阵列(FPGA)上的DL技术实现,等等。讨论部分是关于癫痫发作检测和预测研究之间的比较。使用神经影像模式和DL模型的癫痫发作检测和预测中最重要的挑战。此外,已经提出了数据集,DL,康复和硬件模型领域的未来工作建议。最后一部分致力于结论,并在该领域结合了最重要的发现。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
准确诊断睡眠障碍对于临床评估和治疗至关重要。多元素摄影(PSG)长期以来用于检测各种睡眠障碍。在本研究中,心电图(ECG)和电磁影(EMG)已被用于识别呼吸和运动相关的睡眠障碍。除了使用SynchroSquezed小波变换(SSWT)开发迭代脉冲峰值检测算法之外,还通过提取EMG特征来执行生物信号处理,除了开发迭代脉冲峰值检测算法以获得来自ECG的心率和呼吸相关特征的可靠提取心率和呼吸相关的特征。深度学习框架旨在融入EMG和ECG功能。该框架已被用于对四组进行分类:健康受试者,患者阻塞性睡眠呼吸暂停(OSA),患者患者患者,患者患者和OSA和RLS患者。拟议的深度学习框架在我们制定的四类问题的主题中产生了平均准确性为72%,重量F1分数为0.57分。
translated by 谷歌翻译
客观的。深度神经网络(DNNS)在各种脑机界面应用中表现出了前所未有的成功,例如癫痫发作预测。但是,由于癫痫信号的高度个性化特征,现有方法通常会以特定于患者的方式训练模型。因此,只能将每个受试者的标记录音数量有限用于培训。结果,由于训练数据的不足,目前基于DNN的方法在一定程度上表现出较差的泛化能力。另一方面,与患者无关的模型试图利用更多的患者数据通过将患者数据汇总在一起为所有患者培训通用模型。尽管采用了不同的技术,但结果表明,由于患者的个体差异很高,与患者独立的模型相比性能要比患者特异性模型差。因此,在患者特异性和与患者无关的模型之间存在很大的差距。方法。在本文中,我们提出了一种基于知识蒸馏的新型培训计划,该方案利用了来自多个受试者的大量数据。首先,它从具有预训练的通用模型的所有可用受试者的信号中提取信息。然后可以借助蒸馏知识和其他个性化数据获得患者特异性的模型。主要结果。通过我们建议的计划,对波士顿-MIT儿童医院的Seeg数据库进行了四种最先进的癫痫发作预测方法。由此产生的准确性,敏感性和错误的预测率表明,我们提出的培训方案一致地提高了最先进方法的预测性能。意义。拟议的训练方案显着改善了患者特异性癫痫发作预测因子的性能,并弥合了患者特异性和与患者无关的预测因子之间的差距。
translated by 谷歌翻译
心脏切断(CTG)是用于劳动期间胎儿监测的主要工具。对CTG的解释需要实时动态模式识别。它被认为是具有高度和观察者内部观察者分歧的艰巨任务。机器学习为客观和可靠的CTG评估提供了可行的路径。在这项研究中,使用自回归移动平均(ARMA)模型基于临床专业知识和系统控制理论来开发新的CTG特征,以表征胎儿心率与收缩的响应。在机器学习模型中评估特征,以评估它们在识别胎儿妥协时的功效。ARMA功能在顶级特征中排名,用于检测胎儿妥协。此外,包括基于信号质量的机器学习模型和修剪数据中的临床因素提高了分类器的性能。
translated by 谷歌翻译
The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this paper, we search for the existence of previously unrecognized features related to the incidence of rf breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN's test stand for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable, and simple rule-based models. Based on 6 months of historical data and dedicated experiments, our models show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that the field emitted current following an initial breakdown is closely related to the probability of another breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored with increased temporal resolution in future experiments, to further explore the vacuum activity associated with breakdowns.
translated by 谷歌翻译
闭环大脑刺激是指捕获诸如脑电图(EEG)之类的神经生理学措施,迅速识别感兴趣的神经事件,并产生听觉,磁性或电刺激,从而精确地与大脑过程相互作用。这是一种基本神经科学的新方法,也许是临床应用,例如恢复降解记忆功能;但是,现有工具很昂贵,繁琐,并且具有有限的实验灵活性。在本文中,我们提出了Portiloop,这是一种基于深度学习的,便携式和低成本的闭环刺激系统,能够靶向特定的脑振荡。我们首先记录可以从市售组件构建的开放式软件实现。我们还提供了快速,轻巧的神经网络模型和探索算法,该算法自动优化了所需的脑振荡的模型超参数。最后,我们在实时睡眠主轴检测的具有挑战性的测试案例中验证了该技术,结果可与大规模在线数据注释主轴数据集(MODA;组共识)上的离线专家绩效相当。社区可以提供软件和计划,作为开放科学计划,旨在鼓励进一步开发并推动闭环神经科学研究。
translated by 谷歌翻译
与经典信号处理和基于机器学习的框架相比,基于深度学习的方法基于深度学习的方法显着提高了分类准确性。但大多数是由于脑电图数据中存在的受试者间可变性而无法概括对象无关的任务的主题依赖性研究。在这项工作中,提出了一种新的深度学习框架,其能够进行独立的情感识别,由两部分组成。首先,提出了具有通道关注自动泊车的无监督的长短期存储器(LSTM),用于获取主体不变的潜航向量子空间,即每个人的EEG数据中存在的内部变量。其次,提出了一种具有注意力框架的卷积神经网络(CNN),用于对从提出的LSTM获得的编码的较低的潜在空间表示对具有通道 - 注意自身形拓的编码的低潜空间表示的任务。通过注意机制,所提出的方法可以突出EEG信号的显着时间段,这有助于所考虑的情绪,由结果验证。已经使用公共数据集进行了验证的方法,用于EEG信号,例如Deap DataSet,SEED数据集和CHB-MIT数据集。所提出的端到端深度学习框架消除了不同手工工程特征的要求,并提供了一个单一的全面任务不可知性EEG分析工具,能够对主题独立数据进行各种EEG分析。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译