深度神经网络(DNN)的安全性因其在各种应用中的广泛使用而引起了人们的关注。最近,已被部署的DNN被证明容易受到特洛伊木马攻击的影响,该攻击操纵模型参数,以钻头翻转以注入隐藏的行为并通过特定的触发模式激活它。但是,所有现有的特洛伊木马攻击都采用了明显的基于补丁的触发器(例如,正方形模式),使其对人类可感知,并且很容易被机器发现。在本文中,我们提出了一种新颖的攻击,即几乎不可感知的特洛伊木马攻击(HPT)。 HPT通过利用添加噪声和每个像素流场来分别调整原始图像的像素值和位置,几乎无法察觉到可感知的特洛伊木马图像。为了实现卓越的攻击性能,我们建议共同优化位挡板,加性噪声和流场。由于DNN的重量位是二进制的,因此很难解决此问题。我们通过等效替换处理二进制约束,并提供有效的优化算法。关于CIFAR-10,SVHN和Imagenet数据集的广泛实验表明,所提出的HPT可以生成几乎不可感知的特洛伊木马图像,同时与先进的方法相比实现了可比或更好的攻击性能。该代码可在以下网址获得:https://github.com/jiawangbai/hpt。
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
视觉变压器(VIT)已证明了各种与视觉相关的任务的最新性能。 VIT的成功激发了对手对VIT进行后门攻击。尽管传统CNN对后门攻击的脆弱性是众所周知的,但很少研究对VIT的后门攻击。与CNN相比,通过卷积捕获像素的本地特征,通过补丁和关注来提取全球上下文信息。 na \'ively Aftile CNN特异性的后门攻击对VIT只能产生低清洁的数据准确性和低攻击的成功率。在本文中,我们提出了隐形和实用的VIT特定于VIT特定的后门攻击$ TROJVIT $。而不是区域 - 而不是一个区域 - CNN特异性后门攻击使用的明智触发器,Trojvit生成了一个贴片触发器,旨在构建一个由一些脆弱的位置组成的特洛伊木马,该特洛伊特在vit的参数上通过贴片记忆中存储在DRAM内存中的参数,通过贴片显着排名和注意力靶标的损失。最小调整的参数更新以减少特洛伊木马的位数量。一旦攻击者通过翻转脆弱的位将特洛伊木马插入VIT模型中,VIT模型仍会用良性输入产生正常的推理精度。但是,当攻击者将触发触发嵌入到一个输入,VIT模型被迫将输入分类为预定义的目标类。我们表明,使用众所周知的Rowhammer在VIT模型上识别出较少的弱势位可以将模型转换为一个背面的模型。我们在各种VIT模型上对多个数据集进行了广泛的实验。 Trojvit可以通过在ImageNet上翻转$ 345 $的$ 345 $位来将$ 99.64 \%的测试图像分类为目标类。
translated by 谷歌翻译
Open software supply chain attacks, once successful, can exact heavy costs in mission-critical applications. As open-source ecosystems for deep learning flourish and become increasingly universal, they present attackers previously unexplored avenues to code-inject malicious backdoors in deep neural network models. This paper proposes Flareon, a small, stealthy, seemingly harmless code modification that specifically targets the data augmentation pipeline with motion-based triggers. Flareon neither alters ground-truth labels, nor modifies the training loss objective, nor does it assume prior knowledge of the victim model architecture, training data, and training hyperparameters. Yet, it has a surprisingly large ramification on training -- models trained under Flareon learn powerful target-conditional (or "any2any") backdoors. The resulting models can exhibit high attack success rates for any target choices and better clean accuracies than backdoor attacks that not only seize greater control, but also assume more restrictive attack capabilities. We also demonstrate the effectiveness of Flareon against recent defenses. Flareon is fully open-source and available online to the deep learning community: https://github.com/lafeat/flareon.
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
AI安全社区的一个主要目标是为现实世界应用安全可靠地生产和部署深入学习模型。为此,近年来,在生产阶段(或培训阶段)和相应的防御中,基于数据中毒基于深度神经网络(DNN)的后门攻击以及相应的防御。具有讽刺意味的是,部署阶段的后门攻击,这些攻击通常可以在不专业用户的设备中发生,因此可以说是在现实世界的情景中威胁要威胁,得以更少的关注社区。我们将这种警惕的不平衡归因于现有部署阶段后门攻击算法的弱实用性以及现实世界攻击示范的不足。为了填补空白,在这项工作中,我们研究了对DNN的部署阶段后门攻击的现实威胁。我们基于普通使用的部署阶段攻击范式 - 对抗对抗权重攻击的研究,主体选择性地修改模型权重,以将后台嵌入到部署的DNN中。为了实现现实的实用性,我们提出了第一款灰度盒和物理可实现的重量攻击算法,即替换注射,即子网替换攻击(SRA),只需要受害者模型的架构信息,并且可以支持现实世界中的物理触发器。进行了广泛的实验模拟和系统级真实的世界攻击示范。我们的结果不仅提出了所提出的攻击算法的有效性和实用性,还揭示了一种新型计算机病毒的实际风险,这些计算机病毒可能会广泛传播和悄悄地将后门注入用户设备中的DNN模型。通过我们的研究,我们要求更多地关注DNN在部署阶段的脆弱性。
translated by 谷歌翻译
Transforming off-the-shelf deep neural network (DNN) models into dynamic multi-exit architectures can achieve inference and transmission efficiency by fragmenting and distributing a large DNN model in edge computing scenarios (e.g., edge devices and cloud servers). In this paper, we propose a novel backdoor attack specifically on the dynamic multi-exit DNN models. Particularly, we inject a backdoor by poisoning one DNN model's shallow hidden layers targeting not this vanilla DNN model but only its dynamically deployed multi-exit architectures. Our backdoored vanilla model behaves normally on performance and cannot be activated even with the correct trigger. However, the backdoor will be activated when the victims acquire this model and transform it into a dynamic multi-exit architecture at their deployment. We conduct extensive experiments to prove the effectiveness of our attack on three structures (ResNet-56, VGG-16, and MobileNet) with four datasets (CIFAR-10, SVHN, GTSRB, and Tiny-ImageNet) and our backdoor is stealthy to evade multiple state-of-the-art backdoor detection or removal methods.
translated by 谷歌翻译
最近,后门攻击已成为对深神经网络(DNN)模型安全性的新兴威胁。迄今为止,大多数现有研究都集中于对未压缩模型的后门攻击。尽管在实际应用中广泛使用的压缩DNN的脆弱性尚未得到利用。在本文中,我们建议研究和发展针对紧凑型DNN模型(RIBAC)的强大和不可感知的后门攻击。通过对重要设计旋钮进行系统分析和探索,我们提出了一个框架,该框架可以有效地学习适当的触发模式,模型参数和修剪口罩。从而同时达到高触发隐形性,高攻击成功率和高模型效率。跨不同数据集的广泛评估,包括针对最先进的防御机制的测试,证明了RIBAC的高鲁棒性,隐身性和模型效率。代码可从https://github.com/huyvnphan/eccv2022-ribac获得
translated by 谷歌翻译
典型的深神经网络(DNN)后门攻击基于输入中嵌入的触发因素。现有的不可察觉的触发因素在计算上昂贵或攻击成功率低。在本文中,我们提出了一个新的后门触发器,该扳机易于生成,不可察觉和高效。新的触发器是一个均匀生成的三维(3D)二进制图案,可以水平和/或垂直重复和镜像,并将其超级贴在三通道图像上,以训练后式DNN模型。新型触发器分散在整个图像中,对单个像素产生微弱的扰动,但共同拥有强大的识别模式来训练和激活DNN的后门。我们还通过分析表明,随着图像的分辨率提高,触发因素越来越有效。实验是使用MNIST,CIFAR-10和BTSR数据集上的RESNET-18和MLP模型进行的。在无遗象的方面,新触发的表现优于现有的触发器,例如Badnet,Trojaned NN和隐藏的后门。新的触发因素达到了几乎100%的攻击成功率,仅将分类准确性降低了不到0.7%-2.4%,并使最新的防御技术无效。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
深度神经网络(DNN)的最新进步已经看到多个安全敏感域中的广泛部署。需要资源密集型培训和使用有价值的域特定培训数据,使这些模型成为模型所有者的顶级知识产权(IP)。 DNN隐私的主要威胁之一是模型提取攻击,前提是在DNN模型中试图窃取敏感信息。最近的研究表明,基于硬件的侧信道攻击可以揭示关于DNN模型的内部知识(例如,模型架构)但到目前为止,现有攻击不能提取详细的模型参数(例如,权重/偏置)。在这项工作中,我们首次提出了一种先进的模型提取攻击框架,借助记忆侧通道攻击有效地窃取了DNN权重。我们建议的深度包括两个关键阶段。首先,我们通过采用基于Rowhammer的硬件故障技术作为信息泄漏向量,开发一种名为HammerLeak的新重量位信息提取方法。 Hammerleak利用了用于DNN应用的几种新的系统级技术,以实现快速高效的重量窃取。其次,我们提出了一种具有平均聚类重量惩罚的新型替代模型训练算法,其利用部分泄漏的位信息有效地利用了目标受害者模型的替代原型。我们在三个流行的图像数据集(例如,CiFar-10/100 / GTSRB)和四个DNN架构上评估该替代模型提取方法(例如,Reset-18/34 / Wide-Reset / Vgg-11)。提取的替代模型在CiFar-10数据集的深度剩余网络上成功实现了超过90%的测试精度。此外,我们提取的替代模型也可能产生有效的对抗性输入样本来欺骗受害者模型。
translated by 谷歌翻译
在现实世界应用中的深度神经网络(DNN)的成功受益于丰富的预训练模型。然而,回溯预训练模型可以对下游DNN的部署构成显着的特洛伊木马威胁。现有的DNN测试方法主要旨在在对抗性设置中找到错误的角壳行为,但未能发现由强大的木马攻击所制作的后门。观察特洛伊木马网络行为表明,它们不仅由先前的工作所提出的单一受损神经元反射,而且归因于在多个神经元的激活强度和频率中的关键神经路径。这项工作制定了DNN后门测试,并提出了录音机框架。通过少量良性示例的关键神经元的差异模糊,我们识别特洛伊木马路径,特别是临界人,并通过模拟所识别的路径中的关键神经元来产生后门测试示例。广泛的实验表明了追索者的优越性,比现有方法更高的检测性能。通过隐秘的混合和自适应攻击来检测到后门的录音机更好,现有方法无法检测到。此外,我们的实验表明,录音所可能会揭示模型动物园中的模型的潜在潜在的背面。
translated by 谷歌翻译
深度神经网络(DNNS)的广泛应用要求越来越多的关注对其现实世界的鲁棒性,即DNN是否抵抗黑盒对抗性攻击,其中包括基于得分的查询攻击(SQA)是最威胁性的。由于它们的实用性和有效性:攻击者只需要在模型输出上进行数十个查询即可严重伤害受害者网络。针对SQA的防御需要对用户的服务目的而略有但巧妙的输出变化,这些用户与攻击者共享相同的输出信息。在本文中,我们提出了一种称为统一梯度(UNIG)的现实世界防御,以统一不同数据的梯度,以便攻击者只能探究不同样本相似的较弱的攻击方向。由于这种普遍的攻击扰动的验证与投入特定的扰动相比,Unig通过指示攻击者一个扭曲且信息不足的攻击方向来保护现实世界中的DNN。为了增强Unig在现实世界应用中的实际意义,我们将其实现为Hadamard产品模块,该模块具有计算效率且很容易插入任何模型。根据对5个SQA和4个防御基线的广泛实验,Unig显着改善了现实世界的鲁棒性,而不会伤害CIFAR10和Imagenet上的清洁准确性。例如,Unig在2500 Query Square攻击下保持了77.80%精度的CIFAR-10模型,而最先进的对手训练的模型仅在CIFAR10上具有67.34%的速度。同时,Unig在清洁精度和输出的修改程度上大大超过了所有基准。代码将发布。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
近年来,AI系统的安全性吸引了越来越多的研究,特别是在医学成像领域。为了开发安全的医学图像分析(MIA)系统,必须研究可能的后门攻击(BAS),这可以将隐藏的恶意行为嵌入系统中。然而,由于成像方式的多样性(例如,X射线,CT和MRI)和分析任务(例如,分类,检测和分割),设计可以应用于各种MIA系统的统一BA方法是具有挑战性的。大多数现有的BA方法旨在攻击自然图像分类模型,该模型将空间触发器应用于训练图像,不可避免地破坏中毒像素的语义,导致攻击密集预测模型的失败。为了解决这个问题,我们提出了一种新的基于频率喷射的次频率注入的后门攻击方法(FIBA),其能够在各种MIA任务中提供攻击。具体地,FIBA利用频域中的触发功能,该频域可以通过线性地组合两个图像的光谱幅度将触发图像的低频信息注入中毒图像中。由于它保留了中毒图像像素的语义,因此FIBA可以对分类和密集预测模型进行攻击。 MIA三个基准测试的实验(即,2019年为皮肤病变分类,肾脏肿瘤分割的试剂盒-19,用于内窥镜伪影检测的EAD-2019),验证了FIBA的有效性及其在级的优越性 - 攻击MIA模型的艺术方法以及绕过后门防御。代码将在https://github.com/hazardfy/fiba上获得。
translated by 谷歌翻译
本文提出了针对回顾性神经网络(Badnets)的新型两级防御(NNOCULICULE),该案例在响应该字段中遇到的回溯测试输入,修复了预部署和在线的BADNET。在预部署阶段,NNICULICULE与清洁验证输入的随机扰动进行检测,以部分减少后门的对抗影响。部署后,NNOCULICULE通过在原始和预先部署修补网络之间录制分歧来检测和隔离测试输入。然后培训Constcan以学习清洁验证和隔离输入之间的转换;即,它学会添加触发器来清洁验证图像。回顾验证图像以及其正确的标签用于进一步重新培训预修补程序,产生我们的最终防御。关于全面的后门攻击套件的实证评估表明,NNOCLICULE优于所有最先进的防御,以制定限制性假设,并且仅在特定的后门攻击上工作,或者在适应性攻击中失败。相比之下,NNICULICULE使得最小的假设并提供有效的防御,即使在现有防御因攻击者而导致其限制假设而导致的现有防御无效的情况下。
translated by 谷歌翻译
随着机器学习数据的策展变得越来越自动化,数据集篡改是一种安装威胁。后门攻击者通过培训数据篡改,以嵌入在该数据上培训的模型中的漏洞。然后通过将“触发”放入模型的输入中的推理时间以推理时间激活此漏洞。典型的后门攻击将触发器直接插入训练数据,尽管在检查时可能会看到这种攻击。相比之下,隐藏的触发后托攻击攻击达到中毒,而无需将触发器放入训练数据即可。然而,这种隐藏的触发攻击在从头开始培训的中毒神经网络时无效。我们开发了一个新的隐藏触发攻击,睡眠代理,在制备过程中使用梯度匹配,数据选择和目标模型重新培训。睡眠者代理是第一个隐藏的触发后门攻击,以对从头开始培训的神经网络有效。我们展示了Imagenet和黑盒设置的有效性。我们的实现代码可以在https://github.com/hsouri/sleeper-agent找到。
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译