Spectral methods provide consistent estimators for community detection in dense graphs. However, their performance deteriorates as the graphs become sparser. In this work we consider a random graph model that can produce graphs at different levels of sparsity, and we show that graph neural networks can outperform spectral methods on sparse graphs. We illustrate the results with numerical examples in both synthetic and real graphs.
translated by 谷歌翻译
图神经网络(GNN)是非欧盟数据的强大深度学习方法。流行的GNN是通信算法(MPNNS),它们在本地图中汇总并结合了信号。但是,浅的mpnns倾向于错过远程信号,并且在某些异质图上表现不佳,而深度mpnns可能会遇到过度平滑或过度阵型等问题。为了减轻此类问题,现有的工作通常会从欧几里得数据上训练神经网络或修改图形结构中借用归一化技术。然而,这些方法在理论上并不是很好地理解,并且可能会提高整体计算复杂性。在这项工作中,我们从光谱图嵌入中汲取灵感,并提出$ \ texttt {powerembed} $ - 一种简单的层归一化技术来增强mpnns。我们显示$ \ texttt {powerembed} $可以证明图形运算符的顶部 - $ k $引导特征向量,该算子可以防止过度光滑,并且对图形拓扑是不可知的;同时,它产生了从本地功能到全球信号的表示列表,避免了过度阵列。我们将$ \ texttt {powerembed} $应用于广泛的模拟和真实图表,并展示其竞争性能,尤其是对于异性图。
translated by 谷歌翻译
图形神经网络(GNNS)是由图形卷积和叉指非线性组成的层组成的深度卷积架构。由于其不变性和稳定性属性,GNN在网络数据的学习陈述中被证明是成功的。但是,训练它们需要矩阵计算,这对于大图可能是昂贵的。为了解决这个限制,我们研究了GNN横跨图形转移的能力。我们考虑图形,这是加权和随机图形的图形限制和生成模型,以定义图形卷积和GNNS - Graphon卷曲和Graphon神经网络(WNNS)的限制对象 - 我们用作图形卷曲的生成模型和GNNS。我们表明,这些石墨源区和WNN可以通过图形滤波器和来自加权和随机图中的它们采样的GNN来近似。使用这些结果,我们将导出误差界限,用于跨越此类图形传输图形过滤器和GNN。这些界限表明,可转换性随着图尺寸的增加而增加,并且揭示了在GNN中的可转换性和光谱分辨率之间的折衷,其被点亮的非线性缓解。这些发现经验在电影推荐和分散机器人控制中的数值实验中进行了经验验证。
translated by 谷歌翻译
图形神经网络(GNNS)使用图形卷积来利用网络不向导并从网络数据中学习有意义的特征表示。但是,在大规模图中,卷积以高计算成本产生,导致可伸缩性限制。在本文中,我们考虑了学习图形神经网络(WNN)的问题 - GNN的极限对象 - 通过训练从Graphon采样的图形上,我们考虑了学习GragraN神经网络(WNN)的问题。在平滑性条件下,我们表明:(i)GNN和WNN上的学习步骤之间的预期距离随图形的尺寸渐近地降低,并且(ii)在一系列生长图上训练时,梯度下降遵循WNN的学习方向。受这些结果的启发,我们提出了一种新型算法,以学习大规模图的GNN,从中等数量的节点开始,在训练过程中依次增加了图的大小。该算法是在分散的控制问题上进一步基准的,在该问题下,它以降低的计算成本保留了与大规模对应物相当的性能。
translated by 谷歌翻译
图形神经网络(GNN)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,事实证明,图形群集等图形上的重要无监督问题对GNN的进步具有更大的抵抗力。图群集的总体目标与GNN中的节点合并相同 - 这是否意味着GNN池方法在聚类图上做得很好?令人惊讶的是,答案是没有的 - 当前的GNN合并方法通常无法恢复群集结构,而在简单的基线(例如应用于学习的表示形式上的K-均值)良好工作的情况下。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中的不同信噪比情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督池方法,并显示了它如何解决现实世界图的挑战性聚类结构的恢复。同样,在现实世界中,我们表明DMON产生的高质量簇与地面真相标签密切相关,从而实现了最先进的结果,比不同指标的其他合并方法提高了40%以上。
translated by 谷歌翻译
We introduce an architecture for processing signals supported on hypergraphs via graph neural networks (GNNs), which we call a Hyper-graph Expansion Neural Network (HENN), and provide the first bounds on the stability and transferability error of a hypergraph signal processing model. To do so, we provide a framework for bounding the stability and transferability error of GNNs across arbitrary graphs via spectral similarity. By bounding the difference between two graph shift operators (GSOs) in the positive semi-definite sense via their eigenvalue spectrum, we show that this error depends only on the properties of the GNN and the magnitude of spectral similarity of the GSOs. Moreover, we show that existing transferability results that assume the graphs are small perturbations of one another, or that the graphs are random and drawn from the same distribution or sampled from the same graphon can be recovered using our approach. Thus, both GNNs and our HENNs (trained using normalized Laplacians as graph shift operators) will be increasingly stable and transferable as the graphs become larger. Experimental results illustrate the importance of considering multiple graph representations in HENN, and show its superior performance when transferability is desired.
translated by 谷歌翻译
光谱聚类是网络中广泛使用的社区检测方法之一。然而,大型网络为其中的特征值分解带来了计算挑战。在本文中,我们研究了从统计角度使用随机草图算法的光谱聚类,在那里我们通常假设网络数据是从随机块模型生成的,这些模型不一定是完整等级的。为此,我们首先使用最近开发的草图算法来获得两个随机谱聚类算法,即基于随机投影和基于随机采样的光谱聚类。然后,我们在群体邻接矩阵的近似误差,错误分类误差和链路概率矩阵的估计误差方面研究得到的算法的理论界限。事实证明,在温和条件下,随机谱聚类算法导致与原始光谱聚类算法相同的理论界。我们还将结果扩展到校正的程度校正的随机块模型。数值实验支持我们的理论发现并显示随机化方法的效率。一个名为rclusct的新R包是开发的,并提供给公众。
translated by 谷歌翻译
假设$ g $是根据所谓的HyperGraph随机块模型(HSBM)产生的,我们考虑了稀疏$ Q $均匀的HyperGraph $ G $中的社区检测问题。我们证明,基于非折线操作员的光谱方法具有很高的概率,可以降低到Angelini等人猜想的广义kesten-Stigum检测阈值。我们表征了稀疏HSBM的非背带操作员的频谱,并使用Ihara-Bass公式为超图提供有效的尺寸降低程序。结果,可以将稀疏HSBM的社区检测减少为$ 2N \ times 2n $非正态矩阵的特征向量问题,该矩阵从邻接矩阵和超级格雷普的学位矩阵中构建。据我们所知,这是第一种可证明,有效的光谱算法,它可以根据一般对称概率张量生成$ K $块的HSBMS阈值。
translated by 谷歌翻译
网络可能具有弱信号和严重程度的异质性,并且可能在一次出现时非常稀疏,但在另一个发生中非常致密。得分(Jin,2015)是最近网络社区检测的方法。它适应严重的程度异质性,并适应不同水平的稀疏性,但它对具有弱信号的网络的性能尚不清楚。在本文中,我们认为,在广泛的网络设置中,我们允许弱信号,严重程度异质性和广泛的网络稀疏性,得分实现了完善的聚类,并且在汉明集群中具有所谓的“指数率”错误。证据对网络邻接矩阵的领先特征向量进行了最新的进出方程。理论分析向我们保证,在弱信号设置中,得分继续运行,但它不排除分数可以进一步提高的可能性,以在实际应用中具有更好的性能,特别是对于具有弱信号的网络。作为纸张的第二份贡献,我们提出得分+作为改进的分数版本。我们调查了8个网络数据集的得分+,发现它优于几种代表性的方法。特别是,对于具有相对强烈的信号的6个数据集,得分+具有与得分相似的性能,但对于2个数据集(Simmons,Caltech)具有可能弱信号,得分+的误差率较低。得分+提出了几个变化以得分。我们使用理论和数值研究的混合物仔细解释每个变化的基本原理。
translated by 谷歌翻译
光谱图神经网络是基于图信号过滤器的一种图神经网络(GNN)。一些能够学习任意光谱过滤器的模型最近出现了。但是,很少有作品分析光谱GNN的表达能力。本文理论上研究了光谱GNNS的表现力。我们首先证明,即使没有非线性的光谱GNN也可以产生任意的图形信号,并给出了两个条件以达到普遍性。它们是:1)图Laplacian的多个特征值和2)节点特征中没有缺失的频率组件。我们还建立了光谱GNN的表达能力与图形同构(GI)测试之间的联系,后者通常用于表征空间GNNS的表达能力。此外,我们从优化的角度研究了具有相同表达能力的不同光谱GNN之间的经验性能差异,并激发了其重量函数对应于光谱中图信号密度的正交基础的使用。受分析的启发,我们提出了Jacobiconv,该雅各比基的正交性和灵活性使用了雅各比的基础,以适应广泛的重量功能。 Jacobiconv抛弃了非线性,同时在合成和现实世界数据集上都超过了所有基线。
translated by 谷歌翻译
我们通过证明PABM是GRDPG的一种特殊情况,其中社区对应于潜在矢量的相互正交子空间,我们连接两个随机图模型,即受欢迎程度调整块模型(PABM)和广义随机点产品图(GRDPG)。这种见解使我们能够为PABM构建用于社区检测和参数估计的新算法,并改善了依赖稀疏子空间聚类的现有算法。利用邻接光谱嵌入GRDPG的渐近特性,我们得出了这些算法的渐近特性。特别是,我们证明,随着图形顶点的数量倾向于无穷大,社区检测误差的绝对数量趋于零。仿真实验说明了这些特性。
translated by 谷歌翻译
近年来,监督学习环境的几个结果表明,古典统计学习 - 理论措施,如VC维度,不充分解释深度学习模型的性能,促使在无限宽度和迭代制度中的工作摆动。但是,对于超出监督环境之外的神经网络成功几乎没有理论解释。在本文中,我们认为,在一些分布假设下,经典学习 - 理论措施可以充分解释转导造型中的图形神经网络的概括。特别是,我们通过分析节点分类问题图卷积网络的概括性特性,对神经网络的性能进行严格分析神经网络。虽然VC维度确实导致该设置中的琐碎泛化误差界限,但我们表明转导变速器复杂性可以解释用于随机块模型的图形卷积网络的泛化特性。我们进一步使用基于转换的Rademacher复杂性的泛化误差界限来展示图形卷积和网络架构在实现较小的泛化误差方面的作用,并在图形结构可以帮助学习时提供洞察。本文的调查结果可以重新新的兴趣在学习理论措施方面对神经网络的概括,尽管在特定问题中。
translated by 谷歌翻译
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online. 1
translated by 谷歌翻译
A central challenge of building more powerful Graph Neural Networks (GNNs) is the oversmoothing phenomenon, where increasing the network depth leads to homogeneous node representations and thus worse classification performance. While previous works have only demonstrated that oversmoothing is inevitable when the number of graph convolutions tends to infinity, in this paper, we precisely characterize the mechanism behind the phenomenon via a non-asymptotic analysis. Specifically, we distinguish between two different effects when applying graph convolutions -- an undesirable mixing effect that homogenizes node representations in different classes, and a desirable denoising effect that homogenizes node representations in the same class. By quantifying these two effects on random graphs sampled from the Contextual Stochastic Block Model (CSBM), we show that oversmoothing happens once the mixing effect starts to dominate the denoising effect, and the number of layers required for this transition is $O(\log N/\log (\log N))$ for sufficiently dense graphs with $N$ nodes. We also extend our analysis to study the effects of Personalized PageRank (PPR) on oversmoothing. Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth and are outperformed by the graph convolution approach on certain graphs. Finally, we support our theoretical results with numerical experiments, which further suggest that the oversmoothing phenomenon observed in practice may be exacerbated by the difficulty of optimizing deep GNN models.
translated by 谷歌翻译
随机图神经网络(SGNN)是信息处理体系结构,可从随机图中学习表示表示。 SGNN受到预期性能的培训,这不能保证围绕最佳期望的特定输出实现的偏差。为了克服这个问题,我们为SGNN提出了一个方差约束优化问题,平衡了预期的性能和随机偏差。通过使用梯度下降和梯度上升的双变量更新SGNN参数,进行了交替的原始双偶学习过程,该过程通过更新SGNN参数来解决问题。为了表征方差约束学习的明确效应,我们对SGNN输出方差进行理论分析,并确定随机鲁棒性和歧视能力之间的权衡。我们进一步分析了方差约束优化问题的二元性差距以及原始双重学习过程的融合行为。前者表示双重变换引起的最优性损失,后者是迭代算法的限制误差,这两者都保证了方差约束学习的性能。通过数值模拟,我们证实了我们的理论发现,并观察到具有可控标准偏差的强劲预期性能。
translated by 谷歌翻译
通过递归将整个社区的节点特征汇总,空间图卷积运算符已被宣布为图形神经网络(GNNS)成功的关键。然而,尽管GNN方法跨任务和应用程序进行了繁殖,但此聚合操作对其性能的影响尚未得到广泛的分析。实际上,尽管努力主要集中于优化神经网络的体系结构,但更少的工作试图表征(a)不同类别的空间卷积操作员,(b)特定类别的选择如何与数据的属性相关,以及(c)它对嵌入空间的几何形状的影响。在本文中,我们建议通过将现有操作员分为两个主要类(对称性与行规范的空间卷积)来回答所有三个问题,并展示它们如何转化为数据性质的不同隐性偏见。最后,我们表明,这种聚合操作员实际上是可调的,并且明确的制度在其中某些操作员(因此,嵌入几何形状)的某些选择可能更合适。
translated by 谷歌翻译
对于从分布$ \ mu $采样的图值数据,根据选择度量计算样品矩。在这项工作中,我们为图表集合了由$ \ ell_2 $规范定义的伪金属,相应的邻接矩阵的特征值之间。我们使用此伪度量标准和图值数据集的各个样本矩来推断分布的参数$ \ hat {\ mu} $,并将其解释为$ \ mu $的近似值。我们通过实验验证复杂的分布$ \ mu $可以很好地近似地使用这种方法。
translated by 谷歌翻译
图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形群集。大多数GNN使用消息传递框架,因此称为MPNN。尽管有很有希望的结果,但据报道,MPNN会遭受过度平滑,过度阵型和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留该图的全局拓扑,因此没有可区分(电感),并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用LOV \'ASZ绑定来原理,完全可区分且无参数。我们的方法通过提出两个新的,mpnns中的新的互补层来提供统一的图形重新布线:首先,ctlayer,一个学习通勤时间并将其用作边缘重新加权的相关函数;其次,Gaplayer是优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上验证了我们提出的方法的价值,并使用基准数据集分别验证了这些层的每个层以进行图形分类。 Diffwire将通勤时间的可学习性汇集到相关的曲率定义,为发展更具表现力的MPNN的发展打开了大门。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
我们从光谱的角度解决图形生成问题,首先生成图形laplacian光谱的主要部分,然后构建与这些特征值和特征向量相匹配的图。光谱调节允许直接建模全局和局部图结构,并有助于克服单发图生成器的表达性和模式崩溃问题。我们的新颖的甘(Spectre)称为Spectre,可以使用一声模型来产生比以前可能更大的图。Spectre的表现优于最先进的深度自动回归发电机在建模忠诚方面,同时还避免了昂贵的顺序产生和对节点排序的依赖。一个很好的例子,在相当大的合成和现实图形中,Specter的幽灵比最佳竞争对手的最佳竞争对手的改进是4到170倍,该竞争对手不合适,比自回旋发电机快23至30倍。
translated by 谷歌翻译