机器学习的最新进展主要受益于大规模的可访问培训数据。但是,大规模的数据共享提出了极大的隐私问题。在这项工作中,我们提出了一种基于PAINE框架(G-PATE)的新型隐私保留数据生成模型,旨在训练可缩放的差异私有数据生成器,其保留高生成的数据实用程序。我们的方法利用生成的对抗性网来产生数据,与不同鉴别者之间的私人聚集相结合,以确保强烈的隐私保障。与现有方法相比,G-PATE显着提高了隐私预算的使用。特别是,我们用教师鉴别者的集合训练学生数据发生器,并提出一种新颖的私人梯度聚合机制,以确保对从教师鉴别者流到学生发电机的所有信息的差异隐私。另外,通过随机投影和梯度离散化,所提出的梯度聚合机制能够有效地处理高维梯度向量。从理论上讲,我们证明了G-PATE确保了数据发生器的差异隐私。经验上,我们通过广泛的实验证明了G-PAIN的优越性。我们展示了G-PATE是第一个能够在限量隐私预算下产生高数据实用程序的高维图像数据($ \ epsilon \ LE 1 $)。我们的代码可在https://github.com/ai-secure/gate上获得。
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
现代机器学习系统在大型数据集中培训时取得了巨大的成功。但是,这些数据集通常包含敏感信息(例如医疗记录,面部图像),导致严重的隐私问题。差异化私有生成模型(DPGM)通过生成私有化的敏感数据来避免此类隐私问题的解决方案。与其他差异私人(DP)学习者类似,DPGM的主要挑战也是如何在效用和隐私之间取得微妙的平衡。我们提出了DP $^2 $ -VAE,这是一种具有可证明的DP保证的变性自动编码器(VAE)的新型培训机制,并通过\ emph {pre-emph {pre-emph {prec-emph {pret-emph {pret-training}。在相同的DP约束下,DP $^2 $ -VAE最大程度地减少了训练过程中的扰动噪声,从而改善了实用性。 DP $^2 $ -VAE非常灵活,并且对许多其他VAE变体都很容易适应。从理论上讲,我们研究了预训练对私人数据的影响。从经验上讲,我们在图像数据集上进行了广泛的实验,以说明我们在各种隐私预算和评估指标下对基准的优越性。
translated by 谷歌翻译
虽然在巨大数据上培训的机器学习模型导致了几个领域的断路器,但由于限制数据的访问,他们在隐私敏感域中的部署仍然有限。在私有数据上具有隐私约束的生成模型可以避免此挑战,而是提供对私有数据的间接访问。我们提出DP-Sinkhorn,一种新的最优传输的生成方法,用于从具有差异隐私的私有数据学习数据分布。 DP-Sinkhorn以差别私人方式在模型和数据之间的模型和数据之间最小化陷阱的分歧,将计算上有效的近似值,并在模型和数据之间使用新技术来控制梯度估计的偏差差异的偏差折衷。与现有的培训方法不同,差异私人生成模型主要基于生成的对抗网络,我们不依赖于对抗性目标,这令人惊叹的难以优化,特别是在隐私约束所施加的噪声存在下。因此,DP-Sinkhorn易于训练和部署。通过实验,我们改进了多种图像建模基准的最先进,并显示了差异私有的信息RGB图像综合。项目页面:https://nv-tlabs.github.io/dp-sinkhorn。
translated by 谷歌翻译
为了保护培训生成的对抗网络(GaN)中的敏感数据,标准方法是使用差异的私有(DP)随机梯度下降方法,其中将受控噪声添加到梯度。输出合成样品的质量可能会受到不利影响,并且网络的训练甚至可能不会在这些噪声的存在下收敛。我们提出了差异私有的模型反演(DPMI)方法,其中私有数据首先通过公共发生器映射到潜在空间,然后是具有更好的收敛属性的低维DP-GaN。标准数据集CIFAR10和SVHN的实验结果以及自闭症筛选的面部地标数据集表明,我们的方法在同一隐私保证下,基于Incepion得分,FR \'Echet Inception距离和分类准确性的标准DP-GaN方法优于标准DP-GaN方法。
translated by 谷歌翻译
Differentially private data generation techniques have become a promising solution to the data privacy challenge -- it enables sharing of data while complying with rigorous privacy guarantees, which is essential for scientific progress in sensitive domains. Unfortunately, restricted by the inherent complexity of modeling high-dimensional distributions, existing private generative models are struggling with the utility of synthetic samples. In contrast to existing works that aim at fitting the complete data distribution, we directly optimize for a small set of samples that are representative of the distribution under the supervision of discriminative information from downstream tasks, which is generally an easier task and more suitable for private training. Our work provides an alternative view for differentially private generation of high-dimensional data and introduces a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
translated by 谷歌翻译
With the development of machine learning and data science, data sharing is very common between companies and research institutes to avoid data scarcity. However, sharing original datasets that contain private information can cause privacy leakage. A reliable solution is to utilize private synthetic datasets which preserve statistical information from original datasets. In this paper, we propose MC-GEN, a privacy-preserving synthetic data generation method under differential privacy guarantee for machine learning classification tasks. MC-GEN applies multi-level clustering and differential private generative model to improve the utility of synthetic data. In the experimental evaluation, we evaluated the effects of parameters and the effectiveness of MC-GEN. The results showed that MC-GEN can achieve significant effectiveness under certain privacy guarantees on multiple classification tasks. Moreover, we compare MC-GEN with three existing methods. The results showed that MC-GEN outperforms other methods in terms of utility.
translated by 谷歌翻译
接受差异隐私(DP)训练的生成模型可用于生成合成数据,同时最大程度地降低隐私风险。我们分析了DP对数据的影响不足的数据/子组的影响,特别是研究:1)合成数据中类/子组的大小和2)分类任务的准确性在其上运行。我们还评估了各种不平衡和隐私预算的影响。我们的分析使用了三种最先进的DP模型(Privbayes,DP-WGAN和PATE-GAN),并表明DP在生成的合成数据中产生相反的大小分布。它影响了多数族裔和少数族裔/亚组之间的差距;在某些情况下,通过减少它(一种“罗宾汉”效应),而在其他情况下则通过增加它(一种“马修”效应)。无论哪种方式,这都会导致(类似)对合成数据的分类任务准确性的(类似)不同的影响,从而更加不成比例地影响了代表性不足的数据。因此,当培训模型对合成数据时,可能会导致不均匀地处理不同亚群的风险,从而得出不可靠或不公平的结论。
translated by 谷歌翻译
Applying machine learning (ML) to sensitive domains requires privacy protection of the underlying training data through formal privacy frameworks, such as differential privacy (DP). Yet, usually, the privacy of the training data comes at the cost of the resulting ML models' utility. One reason for this is that DP uses one uniform privacy budget epsilon for all training data points, which has to align with the strictest privacy requirement encountered among all data holders. In practice, different data holders have different privacy requirements and data points of data holders with lower requirements can contribute more information to the training process of the ML models. To account for this need, we propose two novel methods based on the Private Aggregation of Teacher Ensembles (PATE) framework to support the training of ML models with individualized privacy guarantees. We formally describe the methods, provide a theoretical analysis of their privacy bounds, and experimentally evaluate their effect on the final model's utility using the MNIST, SVHN, and Adult income datasets. Our empirical results show that the individualized privacy methods yield ML models of higher accuracy than the non-individualized baseline. Thereby, we improve the privacy-utility trade-off in scenarios in which different data holders consent to contribute their sensitive data at different individual privacy levels.
translated by 谷歌翻译
生成的对抗网络(GANS)是生成综合数据,尤其是图像的最流行的方法之一,用于数据共享目的。鉴于在原始数据中保留各个数据点隐私至关重要的重要意义,GAN培训利用具有差异隐私保障(如差异隐私(DP)等强大隐私保证的框架。然而,当呈现有不平衡的数据集时,这些方法仍然超越单个性能指标之外。为此,我们系统地将培训的Gans与两个透视图的不同数据不平衡设置中的两个最着名的DP框架培训培训 - 从两个透视图 - 生成的合成数据和它们的类别中的类别分类绩效。我们的分析表明,与DP-SGD类似,应用头脑对下面的/超代表的类别具有不同的影响,但在更温和的幅度下使其更加强大。有趣的是,我们的实验一直表明,对于PITE,与DP-SGD不同,隐私式实用权折衷不是单调递减,而是更平滑和倒置U形,这意味着增加了小程度的隐私实际上有助于泛化。但是,我们还确定了一些设置(例如,大不平衡),Pate-GaN完全无法学习培训数据的一些子部分。
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
梯度泄漏攻击被认为是深度学习中的邪恶隐私威胁之一,因为攻击者在迭代培训期间隐蔽了梯度更新,而不会影响模型培训质量,但又使用泄漏的梯度逐步重建敏感培训数据,具有高攻击成功率。虽然具有差异隐私的深度学习是发布具有差异隐私保障的深度学习模型的违法标准,但我们展示了具有固定隐私参数的差异私有算法易受梯度泄漏攻击的影响。本文调查了差异隐私(DP)的梯度泄漏弹性深度学习的替代方法。首先,我们分析了差异隐私的深度学习的现有实现,它使用固定噪声方差使用固定隐私参数将恒定噪声对所有层中的梯度注入恒定噪声。尽管提供了DP保证,但该方法遭受了低精度,并且很容易受到梯度泄漏攻击。其次,通过使用动态隐私参数,我们提出了一种梯度泄漏弹性深度学习方法,差异隐私保证。与导致恒定噪声方差导致的固定参数策略不同,不同的动态参数策略存在替代技术,以引入自适应噪声方差和自适应噪声注入,其与差别私有模型训练期间的梯度更新的趋势紧密对齐。最后,我们描述了四个互补指标来评估和比较替代方法。
translated by 谷歌翻译
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality. * Google.† OpenAI. Work done while at Google.
translated by 谷歌翻译
尽管在文本,图像和视频上生成的对抗网络(GAN)取得了显着的成功,但由于一些独特的挑战,例如捕获不平衡数据中的依赖性,因此仍在开发中,生成高质量的表格数据仍在开发中,从而优化了合成患者数据的质量。保留隐私。在本文中,我们提出了DP-CGAN,这是一个由数据转换,采样,条件和网络培训组成的差异私有条件GAN框架,以生成现实且具有隐私性的表格数据。 DP-Cgans区分分类和连续变量,并将它们分别转换为潜在空间。然后,我们将条件矢量构建为附加输入,不仅在不平衡数据中介绍少数族裔类,还可以捕获变量之间的依赖性。我们将统计噪声注入DP-CGAN的网络训练过程中的梯度,以提供差异隐私保证。我们通过统计相似性,机器学习绩效和隐私测量值在三个公共数据集和两个现实世界中的个人健康数据集上使用最先进的生成模型广泛评估了我们的模型。我们证明,我们的模型优于其他可比模型,尤其是在捕获变量之间的依赖性时。最后,我们在合成数据生成中介绍了数据实用性与隐私之间的平衡,考虑到现实世界数据集的不同数据结构和特征,例如不平衡变量,异常分布和数据的稀疏性。
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译
差异隐私(DP)已被出现为严格的形式主义,以推理可量化的隐私泄漏。在机器学习(ML)中,已采用DP限制推理/披露训练示例。在现有的工作中杠杆横跨ML管道,尽管隔离,通常专注于梯度扰动等机制。在本文中,我们展示了DP-util,DP整体实用分析框架,跨越ML管道,重点是输入扰动,客观扰动,梯度扰动,输出扰动和预测扰动。在隐私敏感数据上给出ML任务,DP-Util使ML隐私从业者能够对DP在这五个扰动点中的影响,以模型公用事业丢失,隐私泄漏和真正透露的数量来测量DP的影响。训练样本。我们在视觉,医疗和金融数据集上使用两个代表性学习算法(Logistic回归和深神经网络)来评估DP-Uts,以防止会员资格推论攻击作为案例研究攻击。我们结果的一个亮点是,预测扰动一致地在所有数据集中始终如一地实现所有模型的最低实用损耗。在Logistic回归模型中,与其他扰动技术相比,客观扰动导致最低的隐私泄漏。对于深度神经网络,梯度扰动导致最低的隐私泄漏。此外,我们的结果揭示了记录的结果表明,由于隐私泄漏增加,差异私有模型揭示了更多数量的成员样本。总体而言,我们的研究结果表明,为了使使用的扰动机制有明智的决定,ML隐私从业者需要检查优化技术(凸与非凸),扰动机制,课程数量和隐私预算之间的动态。
translated by 谷歌翻译
在本文中,我们研究了具有差异隐私(DP)的学习图神经网络(GNN)的问题。我们提出了一种基于聚合扰动(GAP)的新型差异私有GNN,该GNN为GNN的聚合函数添加了随机噪声,以使单个边缘(边缘级隐私)或单个节点的存在统计上的存在及其所有邻接边缘( - 级别的隐私)。 GAP的新体系结构是根据私人学习的细节量身定制的,由三个单独的模块组成:(i)编码器模块,我们在不依赖边缘信息的情况下学习私人节点嵌入; (ii)聚合模块,其中我们根据图结构计算嘈杂的聚合节点嵌入; (iii)分类模块,我们在私有聚合上训练神经网络进行节点分类,而无需进一步查询图表。 GAP比以前的方法的主要优势在于,它可以从多跳社区的聚合中受益,并保证边缘级别和节点级别的DP不仅用于培训,而且可以推断出培训的隐私预算以外的额外费用。我们使用R \'Enyi DP来分析GAP的正式隐私保证,并在三个真实世界图数据集上进行经验实验。我们证明,与最先进的DP-GNN方法和天真的MLP基线相比,GAP提供了明显更好的准确性私人权衡权衡。
translated by 谷歌翻译
我们提供了一种差异化私有算法,用于同时生成多个任务的合成数据:边际查询和多任务机器学习(ML)。我们算法中的一个关键创新是能够直接处理数值特征的能力,与许多相关的先验方法相反,这些方法需要首先通过{binning策略}将数值特征转换为{高基数}分类特征。为了提高准确性,需要较高的分子粒度,但这会对可伸缩性产生负面影响。消除对套在一起的需求使我们能够产生合成数据,以保留大量统计查询,例如数值特征的边际和条件线性阈值查询。保留后者意味着在特定半空间上方的每个类标记的点的比例在实际数据和合成数据中都大致相同。这是在多任务设置中训练线性分类器所需的属性。我们的算法还使我们能够为混合边缘查询提供高质量的合成数据,这些数据结合了分类和数值特征。我们的方法始终比最佳可比技术快2-5倍,并在边缘查询和混合型数据集的线性预测任务方面提供了显着的准确性改进。
translated by 谷歌翻译
我们提出了一种重新制定方案,解决了在大型神经网络上应用差异私有SGD的挑战,这是1)存储个体梯度的巨大内存成本,2)增加令人臭名昭着的尺寸依赖的噪声。具体地,我们用两个\ emph {梯度 - 载波}的每个权重矩阵重新定位小维度的矩阵和一个\ emph {残差}矩阵。我们认为,这种重新游离的游离过程保持不变,同时使我们能够计算投影梯度而不计算梯度本身。为了学习差异隐私,我们设计\ emph {Reparamiratized梯度扰动(RGP)},其覆盖梯度载波矩阵上的梯度,并从嘈杂的渐变重新计算原始权重的更新。重要的是,我们使用历史更新来查找渐变 - 载波矩阵,其最优性在线性回归下严格合理,并经过深入学习任务。 RGP显着降低了内存成本并改善了该实用程序。例如,我们是第一个能够在BERT模型上应用差异隐私,并在四个下游任务中实现83.9 \%$ 83.9 = 8 $的平均准确性,而与非 - 私人基线,但享有更低的隐私泄漏风险。
translated by 谷歌翻译
内核平均嵌入是表示和比较概率度量的有用工具。尽管具有有用性,但内核的意思是考虑无限维度的特征,在差异私有数据生成的背景下,这是具有挑战性的。最近的一项工作建议使用有限维的随机特征近似数据分布的内核平均值嵌入,从而产生可分析的敏感性。但是,所需的随机特征的数量过高,通常是一千到十万,这会使隐私准确的权衡加剧。为了改善权衡取舍,我们建议用Hermite多项式特征替换随机功能。与随机特征不同,储能多项式特征是排序的,其中低订单的特征包含的分布更多的信息比高订单处的分布更多。因此,与明显更高的随机特征相比,HERMITE多项式特征的相对较低的阶多项式特征可以更准确地近似数据分布的平均嵌入。正如在几个表格和图像数据集中所证明的那样,Hermite多项式特征似乎比随机傅立叶功能更适合私人数据生成。
translated by 谷歌翻译