Generative adversarial network (GAN) is formulated as a two-player game between a generator (G) and a discriminator (D), where D is asked to differentiate whether an image comes from real data or is produced by G. Under such a formulation, D plays as the rule maker and hence tends to dominate the competition. Towards a fairer game in GANs, we propose a new paradigm for adversarial training, which makes G assign a task to D as well. Specifically, given an image, we expect D to extract representative features that can be adequately decoded by G to reconstruct the input. That way, instead of learning freely, D is urged to align with the view of G for domain classification. Experimental results on various datasets demonstrate the substantial superiority of our approach over the baselines. For instance, we improve the FID of StyleGAN2 from 4.30 to 2.55 on LSUN Bedroom and from 4.04 to 2.82 on LSUN Church. We believe that the pioneering attempt present in this work could inspire the community with better designed generator-leading tasks for GAN improvement.
translated by 谷歌翻译
通过区分真实和合成样品,鉴别器在训练生成对抗网络(GAN)中起着至关重要的作用。尽管实际数据分布保持不变,但由于发电机的发展,合成分布一直变化,从而影响鉴别器的BI分类任务的相应变化。我们认为,对其容量进行即时调整的歧视者可以更好地适应这种时间变化的任务。一项全面的实证研究证实,所提出的培训策略称为Dynamicd,改善了合成性能,而不会产生任何其他计算成本或培训目标。在不同的数据制度下开发了两个容量调整方案,用于培训gan:i)给定足够数量的培训数据,歧视者从逐渐增加的学习能力中受益,ii)ii)当培训数据受到限制时,逐渐减少层宽度的宽度减轻。歧视者的过度问题。在一系列数据集上进行的2D和3D感知图像合成任务的实验证实了我们的动力学的普遍性以及对基准的实质性改进。此外,Dynamicd与其他歧视器改进方法(包括数据增强,正规化器和预训练)具有协同作用,并且在将学习gans合并时会带来连续的性能增长。
translated by 谷歌翻译
反转生成对抗网络(GAN)可以使用预训练的发电机来促进广泛的图像编辑任务。现有方法通常采用gan的潜在空间作为反转空间,但观察到空间细节的恢复不足。在这项工作中,我们建议涉及发电机的填充空间,以通过空间信息补充潜在空间。具体来说,我们替换具有某些实例感知系数的卷积层中使用的恒定填充(例如,通常为零)。通过这种方式,可以适当地适当地适应了预训练模型中假定的归纳偏差以适合每个单独的图像。通过学习精心设计的编码器,我们设法在定性和定量上提高了反演质量,超过了现有的替代方案。然后,我们证明了这样的空间扩展几乎不会影响天然甘纳的歧管,因此我们仍然可以重复使用甘斯(Gans)对各种下游应用学到的先验知识。除了在先前的艺术中探讨的编辑任务外,我们的方法还可以进行更灵活的图像操纵,例如对面部轮廓和面部细节的单独控制,并启用一种新颖的编辑方式,用户可以高效地自定义自己的操作。
translated by 谷歌翻译
生成的对抗性网络(GANS)的成功基本上基于发电机(G)和鉴别者(D)之间的对抗训练。预计它们将达到一定的平衡,其中D不能将生成的图像与真实的图像区分开来。但是,在实践中,难以在GaN训练中实现如此平衡,而是几乎总是超过G.我们将这种现象归因于D和G之间的信息不对称。具体而言,我们观察到确定时的视觉注意力图像是真实还是假的,但G没有明确的线索,在哪个区域专注于特定合成。为了缓解D质量在GAN中竞争的问题,我们的目的是提高G的空间意识。随机采样的多级热手表被编码为G作为感应偏压的中间层。因此,G可以有目的地改善某些图像区域的合成。我们进一步建议将G的空间意识与D.通过这种方式对准G.通过这种方式,我们有效地减少了D和G之间的信息差距。广泛的结果表明,我们的方法将两位玩家游戏推动到均衡的GANS中的两个玩家游戏,导致综合性能更好。作为副产品,引入的空间意识有助于在输出合成上进行交互式编辑。演示视频和更多结果在https://genforce.github.io/eqgan/处。
translated by 谷歌翻译
Recent work has shown that a variety of semantics emerge in the latent space of Generative Adversarial Networks (GANs) when being trained to synthesize images. However, it is difficult to use these learned semantics for real image editing. A common practice of feeding a real image to a trained GAN generator is to invert it back to a latent code. However, existing inversion methods typically focus on reconstructing the target image by pixel values yet fail to land the inverted code in the semantic domain of the original latent space. As a result, the reconstructed image cannot well support semantic editing through varying the inverted code. To solve this problem, we propose an in-domain GAN inversion approach, which not only faithfully reconstructs the input image but also ensures the inverted code to be semantically meaningful for editing. We first learn a novel domain-guided encoder to project a given image to the native latent space of GANs. We then propose domain-regularized optimization by involving the encoder as a regularizer to fine-tune the code produced by the encoder and better recover the target image. Extensive experiments suggest that our inversion method achieves satisfying real image reconstruction and more importantly facilitates various image editing tasks, significantly outperforming start-of-the-arts. 1
translated by 谷歌翻译
这项工作旨在将在一个图像域上预先训练的生成的对抗网络(GaN)转移到新域名,其仅仅是只有一个目标图像。主要挑战是,在有限的监督下,综合照片现实和高度多样化的图像非常困难,同时获取目标的代表性。不同于采用Vanilla微调策略的现有方法,我们分别将两个轻量级模块导入发电机和鉴别器。具体地,我们将属性适配器引入发电机中冻结其原始参数,通过该参数,它可以通过其重复利用现有知识,因此保持合成质量和多样性。然后,我们用一个属性分类器装备了学习良好的鉴别器骨干,以确保生成器从引用中捕获相应的字符。此外,考虑到培训数据的多样性差(即,只有一个图像),我们建议在培训过程中建议在生成域中的多样性限制,减轻优化难度。我们的方法在各种环境下提出了吸引力的结果,基本上超越了最先进的替代方案,特别是在合成多样性方面。明显的是,我们的方法即使具有大域间隙,并且在几分钟内为每个实验提供鲁棒地收敛。
translated by 谷歌翻译
生成照片 - 现实图像,语义编辑和表示学习是高分辨率生成模型的许多潜在应用中的一些。最近在GAN的进展将它们建立为这些任务的绝佳选择。但是,由于它们不提供推理模型,因此使用GaN潜在空间无法在实际图像上完成诸如分类的图像编辑或下游任务。尽管培训了训练推理模型或设计了一种迭代方法来颠覆训练有素的发生器,但之前的方法是数据集(例如人类脸部图像)和架构(例如样式)。这些方法是非延伸到新型数据集或架构的。我们提出了一般框架,该框架是不可知的架构和数据集。我们的主要识别是,通过培训推断和生成模型在一起,我们允许它们彼此适应并收敛到更好的质量模型。我们的\ textbf {invang},可逆GaN的简短,成功将真实图像嵌入到高质量的生成模型的潜在空间。这使我们能够执行图像修复,合并,插值和在线数据增强。我们展示了广泛的定性和定量实验。
translated by 谷歌翻译
制作生成模型3D感知桥梁2D图像空间和3D物理世界仍然挑战。最近尝试用神经辐射场(NERF)配备生成的对抗性网络(GAN),其将3D坐标映射到像素值,作为3D之前。然而,nerf中的隐式功能具有一个非常局部的接收领域,使得发电机难以意识到全局结构。与此同时,NERF建立在体积渲染上,这可能太昂贵,无法产生高分辨率结果,提高优化难度。为了减轻这两个问题,我们通过明确学习结构表示和纹理表示,向高保真3D感知图像综合提出了一种作为Volumegan称为Volumegan的新颖框架。我们首先学习一个特征卷来表示底层结构,然后使用类似NERF的模型转换为特征字段。特征字段进一步累积到作为纹理表示的2D特征图中,然后是用于外观合成的神经渲染器。这种设计使得能够独立控制形状和外观。广泛的数据集的大量实验表明,我们的方法比以前的方法实现了足够更高的图像质量和更好的3D控制。
translated by 谷歌翻译
edu.hk (a) Image Reconstruction (b) Image Colorization (c) Image Super-Resolution (d) Image Denoising (e) Image Inpainting (f) Semantic Manipulation Figure 1: Multi-code GAN prior facilitates many image processing applications using the reconstruction from fixed PGGAN [23] models.
translated by 谷歌翻译
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆力有限,因此在低分辨率的医学图像上对当前的3D GAN模型进行了训练,因此这些模型要么无法扩展到高分辨率,要么容易出现斑驳的人工制品。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成图像的低分辨率版本和高分辨率图像的随机选择子量。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子量之间摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子量化之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
translated by 谷歌翻译
由于GaN潜在空间的勘探和利用,近年来,现实世界的图像操纵实现了奇妙的进展。 GaN反演是该管道的第一步,旨在忠实地将真实图像映射到潜在代码。不幸的是,大多数现有的GaN反演方法都无法满足下面列出的三个要求中的至少一个:重建质量,可编辑性和快速推断。我们在本研究中提出了一种新的两阶段策略,同时适合所有要求。在第一阶段,我们训练编码器将输入图像映射到StyleGan2 $ \ Mathcal {W} $ - 空间,这被证明具有出色的可编辑性,但重建质量较低。在第二阶段,我们通过利用一系列HyperNetWorks来补充初始阶段的重建能力以在反转期间恢复缺失的信息。这两个步骤互相补充,由于Hypernetwork分支和由于$ \ Mathcal {W} $ - 空间中的反转,因此由于HyperNetwork分支和优异的可编辑性而相互作用。我们的方法完全是基于编码器的,导致极快的推断。关于两个具有挑战性的数据集的广泛实验证明了我们方法的优越性。
translated by 谷歌翻译
有条件图像生成的最新方法受益于密集的监督,例如分割标签图,以实现高保真性。但是,很少探索使用密集的监督进行无条件的图像生成。在这里,我们探讨了密集监督在无条件生成中的功效,找到生成器特征图可以替代成本昂贵的语义标签图。从我们的经验证据来看,我们提出了一种新的生成器引导的鉴别剂正则化(GGDR),其中生成器的特征地图监督了歧视者在无条件生成中具有丰富的语义表示。具体而言,我们采用了一个U-NET架构进行鉴别器,该体系结构经过训练,可以预测发电机特征图作为输入的伪造图像。关于Mulitple数据集的广泛实验表明,我们的GGDR始终在定量和定性方面提高基线方法的性能。代码可从https://github.com/naver-ai/ggdr获得
translated by 谷歌翻译
生成的对抗网络(GANS)产生高质量的图像,但致力于训练。它们需要仔细正常化,大量计算和昂贵的超参数扫描。我们通过将生成和真实样本投影到固定的预级特征空间中,在这些问题上进行了重要的头路。发现鉴别者无法充分利用来自预押模型的更深层次的特征,我们提出了更有效的策略,可以在渠道和分辨率中混合特征。我们预计的GaN提高了图像质量,样品效率和收敛速度。它与最多一个百万像素的分辨率进一步兼容,并在二十二个基准数据集上推进最先进的FR \'Echet Inception距离(FID)。重要的是,预计的GAN符合先前最低的FID速度快40倍,鉴于相同的计算资源,将壁钟时间从5天切割到不到3小时。
translated by 谷歌翻译
强大的模拟器高度降低了在培训和评估自动车辆时对真实测试的需求。数据驱动的模拟器蓬勃发展,最近有条件生成对冲网络(CGANS)的进步,提供高保真图像。主要挑战是在施加约束之后的同时合成光量造型图像。在这项工作中,我们建议通过重新思考鉴别者架构来提高所生成的图像的质量。重点是在给定对语义输入生成图像的问题类上,例如场景分段图或人体姿势。我们建立成功的CGAN模型,提出了一种新的语义感知鉴别器,更好地指导发电机。我们的目标是学习一个共享的潜在表示,编码足够的信息,共同进行语义分割,内容重建以及粗糙的粒度的对抗性推理。实现的改进是通用的,并且可以应用于任何条件图像合成的任何架构。我们展示了我们在场景,建筑和人类综合任务上的方法,跨越三个不同的数据集。代码可在https://github.com/vita-epfl/semdisc上获得。
translated by 谷歌翻译
具有高计算成本的生成对抗网络(GANS),例如Biggan和Stylegan2,实现了显着的结果,在随机噪声中合成高分辨率和多样化的图像。降低GAN的计算成本,同时保持发电照片逼真的图像是一种紧急和具有挑战性的领域,用于其在计算资源限制设备上的广泛应用。在这项工作中,我们提出了一种新颖又简单的{\ bf d} isCriminator {\ bf g} uided {\ bf l}用于压缩vanilla {\ bf gaN}的折射方法,称为{\ bf dgl-gan}。受到教师歧视者可能包含一些有意义信息的现象的动机,我们通过对抗函数从教师歧视者转移知识。我们展示DGL-GAN自体虚拟性有效,从教师歧视者学习可以促进学生会的表现,通过广泛的实验结果验证。此外,我们提出了一个两级培训DGL-GAN的培训策略,当我们申请DGL-GAN来压缩两种最具代表性大规模的Vanilla Gans时,可以大大稳定其培训过程并实现卓越的性能。 。实验表明,DGL-GAN实现了最先进的(SOTA)在STYLAG2(FFHQ上的FID 2.92上有近1/3 $参数的FFH3)和Biggan(93.29和FID 9.92,在想象中有近1美元/ Biggan的4 $参数)并优于几种现有的香草GAN压缩技术。此外,DGL-GAN也有效地提高了原始未压缩的GAN的性能,原始未压缩的风格2升高的DGL-GAN促进了FFHQ的FID 2.65,这实现了新的最先进的性能。代码和模型可用于\ url {https://github.com/yuesongtian/dgl-gan}。
translated by 谷歌翻译
现有的少量图像生成方法通常在图像或特征级别采用基于融合的策略来生成新图像。但是,以前的方法很难通过细节良好的细节合成高频信号,从而恶化了合成质量。为了解决这个问题,我们提出了Wovegan,这是一种用于几弹图像生成的频率感知模型。具体而言,我们将编码的特征分解为多个频率组件,并执行低频跳过连接以保留轮廓和结构信息。然后,我们通过采用高频跳过连接来减轻发电机综合细节的斗争,从而为发电机提供信息频率信息。此外,我们在生成的图像和真实图像上利用频率L1损失来进一步阻碍频率信息丢失。广泛的实验证明了我们方法在三个数据集上的有效性和进步。值得注意的是,我们以FID 42.17,LPIPS 0.3868,FID 30.35,LPIPS 0.5076和FID 4.96,LPIPS分别为0.3822,在花,动物面和VGGFace上分别为0.3822。 github:https://github.com/kobeshegu/eccv2022_wavegan
translated by 谷歌翻译
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
translated by 谷歌翻译
GAN的进展使高分辨率的感性质量形象产生了产生。 stylegans允许通过数学操作对W/W+空间中的潜在样式向量进行数学操作进行引人入胜的属性修改,从而有效调节生成器的丰富层次结构表示。最近,此类操作已被推广到原始StyleGan纸中的属性交换之外,以包括插值。尽管StyleGans有许多重大改进,但仍被认为会产生不自然的图像。生成的图像的质量基于两个假设。 (a)生成器学到的层次表示的丰富性,以及(b)样式空间的线性和平滑度。在这项工作中,我们提出了一个层次的语义正常化程序(HSR),该层次正常化程序将生成器学到的层次表示与大量数据学到的相应的强大功能保持一致。 HSR不仅可以改善发电机的表示,还可以改善潜在风格空间的线性和平滑度,从而导致产生更自然的样式编辑的图像。为了证明线性改善,我们提出了一种新型的度量 - 属性线性评分(ALS)。通过改善感知路径长度(PPL)度量的改善,在不同的标准数据集中平均16.19%的不自然图像的生成显着降低,同时改善了属性编辑任务中属性变化的线性变化。
translated by 谷歌翻译
我们提出了一种具有多个鉴别器的生成的对抗性网络,其中每个鉴别者都专门用于区分真实数据集的子集。这种方法有助于学习与底层数据分布重合的发电机,从而减轻慢性模式崩溃问题。从多项选择学习的灵感来看,我们引导每个判别者在整个数据的子集中具有专业知识,并允许发电机在没有监督训练示例和鉴别者的数量的情况下自动找到潜伏和真实数据空间之间的合理对应关系。尽管使用多种鉴别器,但骨干网络在鉴别器中共享,并且培训成本的增加最小化。我们使用多个评估指标展示了我们算法在标准数据集中的有效性。
translated by 谷歌翻译
生成对抗性网络(甘斯)已经成为对解决图像生成的问题,最常用的网络。自我监督甘斯将在后面提出,以避免鉴相器的灾难性的遗忘,提高图像质量产生不需要的类标签。然而,在不同的GAN架构自检任务概不前研究。为此,我们深入地分析以前提出的自我监督任务的贡献,概背景下DeshuffleGANs的混洗。我们分配混洗的任务,以两种不同的GAN鉴别和研究了这两种体系结构的任务的影响。我们比较各种数据集先前提出的DeshuffleGANs延长评估。我们表明,DeshuffleGAN获得最佳FID结果几个数据集相对于其他自主监督甘斯。此外,我们比较的是首先部署到GAN培训和证明其贡献超过了预测旋转的旋转预测混洗。我们设计的名为cDeshuffleGAN评估了解到表示质量的条件DeshuffleGAN。最后,我们表现出的自我监管任务的损失景观和目前认为这些任务的影响可能不会合作,以在某些环境对抗训练GAN培训的贡献。我们的代码可以在https://github.com/gulcinbaykal/DeshuffleGAN找到。
translated by 谷歌翻译