自动程序合成是软件工程中的持久梦想。最近,Open AI和Microsoft提出了一种有希望的深度学习(DL)解决方案,称为Copilot,作为工业产品。尽管一些研究评估了副驾驶解决方案的正确性并报告其问题,但需要进行更多的经验评估,以了解开发人员如何有效地受益。在本文中,我们研究了两项不同的编程任务中副标士的功能:(1)为基本算法问题生成(和复制)正确,有效的解决方案,(2)将副副副总裁与人类程序员的建议解决方案与一组人的建议解决方案进行比较编程任务。对于前者,我们评估副铜在解决计算机科学中选定的基本问题(例如对基本数据结构的基本问题)中的性能和功能。在后者中,使用人提供的解决方案的编程问题数据集。结果表明,Copilot能够为几乎所有基本算法问题提供解决方案,但是,某些解决方案是越野车且不可复制的。此外,Copilot在组合多种方法来生成解决方案方面存在一些困难。将副驾驶员与人类进行比较,我们的结果表明,人类溶液的正确比率大于副本的正确比率,​​而副铜产生的越野车解决方案需要更少的努力来维修。尽管本研究和以前的研究中的强调,副柯洛特(Copilot)作为开发人员特别是在高级编程任务中的助手表现出局限性,但它可以为基本编程任务生成初步解决方案。
translated by 谷歌翻译
本文探讨了大语言模型的自然语言生成能力,并应用于编程课程中常见的两种学习资源类型。使用OpenAI Codex作为大语言模型,我们创建编程练习(包括示例解决方案和测试用例)和代码说明,从定性和定量上评估这些练习。我们的结果表明,大多数自动生成的内容既新颖又明智,在某些情况下可以按原样使用。在创建练习时,我们发现仅通过提供关键字作为模型输入来影响编程概念和它们所包含的上下文主题非常容易。我们的分析表明,大规模生成机器学习模型是指导者的工具,尽管仍然需要进行一些监督以确保生成的内容的质量在传递给学生之前。我们进一步讨论了OpenAI Codex和类似工具对入门编程教育的含义,并强调了未来的研究流,这些研究流有可能提高教师和学生的教育体验质量。
translated by 谷歌翻译
The introductory programming sequence has been the focus of much research in computing education. The recent advent of several viable and freely-available AI-driven code generation tools present several immediate opportunities and challenges in this domain. In this position paper we argue that the community needs to act quickly in deciding what possible opportunities can and should be leveraged and how, while also working on how to overcome or otherwise mitigate the possible challenges. Assuming that the effectiveness and proliferation of these tools will continue to progress rapidly, without quick, deliberate, and concerted efforts, educators will lose advantage in helping shape what opportunities come to be, and what challenges will endure. With this paper we aim to seed this discussion within the computing education community.
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
源代码存储库由大型代码库组成,通常包含容易发生的程序。软件的复杂性日益增加导致时间和识别这些缺陷的时间和成本急剧上升。存在各种方法可以自动生成错误代码的修复程序。但是,由于特定错误的可能解决方案的组合空间很大,因此没有很多工具和数据集可以有效地评估生成的代码。在这项工作中,我们介绍了FixeVal,这是一个基准,其中包括竞争性编程问题及其各自修复程序的基准。我们引入了丰富的测试套件,以评估和评估模型生成程序修复的正确性。我们将两种在编程语言上鉴定的变压器语言模型视为我们的基准,并使用基于匹配和基于执行的评估指标对其进行比较。我们的实验表明,基于匹配的指标不能准确反映模型生成的程序修复,而基于执行的方法通过专门为该解决方案设计的所有情况和场景评估程序。因此,我们认为FixeVal提供了朝着实际自动错误修复和模型生成的代码评估的步骤。
translated by 谷歌翻译
Despite recent success in large language model (LLM) reasoning, LLMs still struggle with hierarchical multi-step reasoning like generating complex programs. In these cases, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs, based on hierarchical function descriptions in natural language. Parsel can be used across domains requiring hierarchical reasoning, e.g. code synthesis, theorem proving, and robotic planning. We demonstrate Parsel's capabilities by using it to generate complex programs that cannot currently be automatically implemented from one description and backtranslating Python programs in the APPS dataset. Beyond modeling capabilities, Parsel allows problem-solving with high-level algorithmic designs, benefiting both students and professional programmers.
translated by 谷歌翻译
大型语言模型已经证明了能够在自然语言和编程语言文本上进行条件和生成的能力。这样的模型打开了多语言代码生成的可能性:代码生成模型是否可以将知识从一种语言推广到另一种语言?尽管当代代码生成模型可以生成语义上正确的Python代码,但对它们使用其他语言的能力知之甚少。我们通过提出Multipl-E来促进该主题的探索,这是自然语言到代码生成的第一个多语言平行基准。 Multipl-E扩展了HumaneVal基准(Chen等,2021),以支持另外18种编程语言,涵盖了一系列编程范式和受欢迎程度。我们在Multipl-E:Codex和Incoder上评估了两个最先进的代码生成模型。我们发现,在几种语言上,法典匹配,甚至超过了其在Python上的性能。在多型E中表示的编程语言范围使我们能够探索语言频率和语言功能对模型性能的影响。最后,将代码生成基准分配给新编程语言的多重方法既可扩展又可扩展。我们描述了一种通用方法,可以轻松地增加对新基准和语言的支持。
translated by 谷歌翻译
我们介绍了一种称为编程拼图的新型编程挑战,作为方案合成的客观和全面评估,并释放Python编程拼图的开源数据集(P3)。每个拼图由短Python程序$ F $定义,目标是找到一个使$ F $返回true的输入。谜题是目的,因为每个人都由其验证者$ F $的源代码完全指定,因此评估为测试候选解决方案所需的$ F $。它们不需要答案密钥或输入/输出示例,也不依赖于自然语言理解。该数据集是全面的,因为它跨越一系列困难和域的问题,从琐碎的字符串操纵问题,经典编程谜题(例如,河内塔),用于采访/竞争编程问题(例如,动态编程),在算法和数学中的长期开放问题(例如,因子)。我们开发基准枚举程序合成,GPT-3和能够解决难题的食盒求解器 - 即使没有访问任何参考解决方案 - 通过从他们自己的过去的解决方案中学习。 Codex表现最佳,解决高达18%的397个测试问题的测试问题,每次尝试和80%的问题占1,000个问题。在一个小的用户学习中,我们发现拼图解决性能和编码体验之间的正相关性,以及人类和AI求解器的难题难度之间。因此,P3的进一步改进可能对许多程序合成区域产生重大影响。
translated by 谷歌翻译
人类开发人员可以使用网络安全缺陷生产代码。可以新兴'智能'代码完成工具有助于修复这些缺点吗?在这项工作中,我们研究了对零拍摄漏洞修复的代码(如Openai的Codex和AI21的侏罗纪J-1)使用大型语言模型(如Openai的Codex和AI21的J-1)。我们调查设计方面的挑战,提示将Coax LLMS进入生成不安全代码的修复版本。由于许多方法来短语和句法 - 具有自然语言,这很困难。通过对四个商业,黑盒子,“现成的”典型的模型进行大规模研究,以及局部训练的模型,在合成,手工制作和现实世界的安全错误场景的混合中,我们的实验表明,LLMS可以共同修复100%的综合生成和手工制作的情景,以及58%的脆弱性,在真实的开源项目中的历史错误中选择。
translated by 谷歌翻译
虽然编程是现代社会中最广泛适用的技能之一,但现代机器学习模型仍然无法对基本问题的解决方案。尽管重要的是,对评估代码生成令人惊讶的是,很少有效,并且难以准确地评估代码生成性能。为了满足这一挑战,我们介绍了一个用于代码生成的基准。与在更受限制的设置中的事先工作不同,我们的基准测试衡量模型采取任意自然语言规范的能力,并生成满意的Python代码。类似于公司如何评估候选软件开发人员,然后我们通过检查测试用例的生成代码来评估模型。我们的基准测试包括10,000个问题,从具有简单的单线解决方案来实现实质性算法挑战。我们在GitHub和我们的培训集上微调大型语言模型,我们发现语法错误的普遍性随着模型的提高而导致呈指数级递减。最近的模型如GPT-Neo可以通过大约20%的介绍性问题的测试用例,因此我们发现机器学习模型现在开始学习如何代码。随着自动代码生成的社会意义在未来几年增加,我们的基准可以提供跟踪进步的重要措施。
translated by 谷歌翻译
在设计基于AI的系统中,有蓬勃发展的兴趣,以帮助人类设计计算系统,包括自动生成计算机代码的工具。这些最值得注意的是,以第一个自我描述的“Ai对程序员”,GitHub Copilot,一种在开源GitHub代码上培训的语言模型。但是,代码通常包含错误 - 因此,鉴于Copilot处理的大量未曝避代码,肯定是语言模型将从可利用的错误代码中学到。这提出了对Copilot代码捐助的安全的担忧。在这项工作中,我们系统地调查了可能导致Github CopIlot推荐不安全代码的普遍存在和条件。为了执行此分析,我们提示CopIlot在与高风险CWE相关的方案中生成代码(例如,从吉利的“前25名”列表中的方案)。我们探索了三个不同代码生成轴上的Copilot的表现 - 检查它如何表现为特定的弱点多样性,提示的多样性以及域的多样性。总共生产89个不同的Copilot方案,以完成,生产1,689个计划。其中,我们发现大约40%的脆弱。
translated by 谷歌翻译
随着人工智能(AI)技术在社会中变得越来越强大和突出,他们的滥用就是日益关注的问题。在教育环境中,学生可以使用AI技术来欺骗作业和考试。在本文中,我们探讨了变形金刚是否可以用于求解介绍级的编程作业,同时绕过常用的AI工具来检测软件部分之间的相似性。我们发现使用GPT-J [Wang和Komatsuzaki,2021]的学生可以完成入门级的编程作业,而无需触发Moss的怀疑[Aiken,2000],这是一种广泛使用的软件相似性和窃探测工具。尽管事实上GPT-J没有接受有关问题的培训,也没有提供任何示例可供工作。我们进一步发现,GPT-J编写的代码在结构上是多种多样的,缺乏任何特定的告诉未来的pla窃检测技术可能会用来尝试识别算法生成的代码。最后,我们讨论了大语言模型的道德和教育含义以及未来研究的方向。
translated by 谷歌翻译
在各个域中应用机器学习(ML)的快速升级导致更多关注ML组件的质量。然后,旨在提高ML组件质量并安全地将其集成到基于ML的系统中的技术和工具的增长。尽管这些工具中的大多数都使用Bugs的生命周期,但没有标准的错误来评估其性能,比较它们并讨论其优势和弱点。在这项研究中,我们首先研究了基于ML的系统中错误的可重复性和可验证性,并显示了每个错误的最重要因素。然后,我们探索在基于ML的软件系统中生成错误基准的挑战,并提供一个错误基准缺陷4ML,该缺陷4ML满足标准基准的所有标准,即相关性,可重复性,公平性,可验证性和可用性。该故障负载基准测试包含ML开发人员在GitHub和堆栈溢出上报告的113个错误,使用两个最受欢迎的ML框架:TensorFlow和Keras。缺陷4ML还解决了基于ML的软件系统软件可靠性工程的重要挑战,例如:1)框架的快速变化,通过为不同版本的框架提供各种错误,2)代码便携性,通过在不同的ML框架中提供相似的错误,3 )错误可重复性,通过提供有关所需依赖关系和数据的完整信息,以及4)通过介绍指向错误的起源的链接来提供有关所需依赖性和数据的完整信息。基于ML的系统从业人员和研究人员可以评估其测试工具和技术的缺陷4ML。
translated by 谷歌翻译
如今,越来越多的应用程序是开发用于在分布式分区技术,即DAPP上运行。 DAPP的业务逻辑通常在通过稳定性开发的智能合同中实现,该编程语言用于在不同区间平台上编写智能合同,包括流行的以太统计。在Ethereum中,在矿工机器上运行的智能合同对应于执行费补偿这种计算资源的执行费用。但是,智能合同的部署和执行成本取决于开发人员完成的实施选择。未申请的设计选择可能导致较高的煤气消耗量比必要的消耗更高。在本文中,我们(i)确定了一套影响智能合同部署和交易成本的19个稳定性味道,(ii)通过涉及34名参与者的调查评估这种嗅觉的相关性。在这些嗅觉之上,我们提出了Gasmet,这是一套统计评估智能合同的代码质量的指标。涉及2,186个智能合同的实验表明,拟议的指标具有与部署成本的直接关联。我们套件中的指标可用于更容易地识别需要优化的源代码段。
translated by 谷歌翻译
Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译
在各个领域采用深度学习(DL)的行业和学术界都有日益增长的需求,以解决现实世界的问题。深度加强学习(DRL)是DL在加固学习领域(RL)的应用。与任何软件系统一样,由于其程序中的故障,DRL应用程序可能会失败。在本文中,我们介绍了第一次尝试在DRL程序中分类故障。我们手动分析了使用众所周知的DRL框架(Openai健身房,多巴胺,Keras-RL,TensoRForce)和开发人员/用户报告的错误开发的DRL程序的761个文物(来自Stack Overflow帖子和GitHub问题)。我们通过几轮讨论标记和分类为已识别的故障。使用与19名开发人员/研究人员的在线调查验证了产生的分类法。为了允许在DRL程序中自动检测故障,我们已经确定了DRL程序的元模型,并开发了DRLINTER,一种利用静态分析和图形转换的基于模型的故障检测方法。 DRLINTINT的执行流程在于解析DRL程序,以生成符合我们元模型的模型,并在模型上应用检测规则以识别故障出现。使用15种合成DRLPRAGIONS评估DRLINTER的有效性,其中我们在分析的分析伪影中观察到的故障。结果表明,Drlinter可以在所有合成错误程序中成功检测故障。
translated by 谷歌翻译
评论是源代码的重要组成部分,是文档的主要来源。这引起了人们对使用大量注释的兴趣训练或评估消耗或生产它们的工具,例如生成甲骨文,甚至是从注释中生成代码,或自动生成代码摘要。这项工作大部分对评论的结构和质量做出了强烈的假设,例如假设它们主要由适当的英语句子组成。但是,我们对这些用例的现有评论的实际质量知之甚少。评论通常包含在其他类型的文本中看不到的独特结构和元素,并且从中过滤或提取信息需要额外的谨慎。本文探讨了来自GitHub的840个最受欢迎的开源项目和Srilab数据集的8422个项目的Python评论的内容和质量,并且Na \“ Ive vs.深入过滤的影响都可以使用现有注释来用于使用现有注释。培训和评估产生评论的系统。
translated by 谷歌翻译
深度学习(DL)框架现在被广泛使用,简化了复杂模型的创建以及它们对各种应用的集成甚至到非DL专家。但是,就像任何其他程序一样,他们容易发生错误。本文与命名静默错误的错误分类:它们会导致错误的行为,但它们不会导致系统崩溃或挂起,也不会向用户显示错误消息。这种错误在DL应用程序和框架中更危险,因为系统的“黑匣子”和系统的随机性质(最终用户无法理解模型如何做出决定)。本文介绍了Keras和Tensorflow Silent错误的第一个实证研究,以及它们对用户节目的影响。从Tensorflow Github存储库中提取与KERA相关的封闭问题。在我们收集的1,168个问题中,77个影响了影响用户程序的可重复静音错误。我们根据“用户程序的影响”和“发生问题”的“发生问题的组件”归类错误。然后,我们根据用户程序的影响,我们为每个问题派生威胁级别。为了评估所确定的类别和影响规模的相关性,我们使用103个DL开发人员进行了在线调查。参与者普遍同意DL库中静音错误的重大影响,并承认了我们的研究结果(即,沉默错误的类别和拟议的影响量表)。最后,利用我们的分析,我们提供了一套指导方针,以促进对DL框架中的这些错误的保护。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
现实世界的语义或基于知识的系统,例如在生物医学领域,可能会变得大而复杂。因此,对此类系统知识库中故障的本地化和修复的工具支持对于它们的实际成功至关重要。相应地,近年来提出了许多知识库调试方法,尤其是基于本体的系统。基于查询的调试是一种相似的交互式方法,它通过向知识工程师提出一系列问题来定位观察到的问题的真正原因。存在这种方法的具体实现,例如本体论编辑器的OntodeBug插件prof \'eg \'e。为了验证新提出的方法比现有方法有利,研究人员通常依靠基于模拟的比较。但是,这种评估方法有一定的局限性,并且通常无法完全告知我们方法的真实性。因此,我们进行了不同的用户研究,以评估基于查询的本体调试的实际价值。研究的一个主要见解是,所考虑的交互方法确实比基于测试案例的替代算法调试更有效。我们还观察到,用户经常在此过程中犯错误,这突出了对用户需要回答的查询的仔细设计的重要性。
translated by 谷歌翻译