Recently, graph neural networks (GNNs) have achieved remarkable performances for quantum mechanical problems. However, a graph convolution can only cover a localized region, and cannot capture long-range interactions of atoms. This behavior is contrary to theoretical interatomic potentials, which is a fundamental limitation of the spatial based GNNs. In this work, we propose a novel attention-based framework for molecular property prediction tasks. We represent a molecular conformation as a discrete atomic sequence combined by atom-atom distance attributes, named Geometry-aware Transformer (GeoT). In particular, we adopt a Transformer architecture, which has been widely used for sequential data. Our proposed model trains sequential representations of molecular graphs based on globally constructed attentions, maintaining all spatial arrangements of atom pairs. Our method does not suffer from cost intensive computations, such as angle calculations. The experimental results on several public benchmarks and visualization maps verified that keeping the long-range interatomic attributes can significantly improve the model predictability.
translated by 谷歌翻译
由于它们在元素之间代表复杂互动的能力,变压器已成为许多应用中的选择方法。然而,将变压器架构扩展到非顺序数据,例如分子,并使其对小型数据集的训练仍然是一个挑战。在这项工作中,我们引入了一种用于分子性能预测的基于变压器的架构,其能够捕获分子的几何形状。我们通过分子几何形状的初始编码来修改经典位置编码器,以及学习的门控自我关注机制。我们进一步提出了一种增强方案,用于避免通过过次分辨率的架构引起的过度拟合的分子数据。所提出的框架优于最先进的方法,同时仅基于纯机器学习,即,即该方法不包含量子化学的域知识,并且在成对原子距离旁边没有使用延伸的几何输入。
translated by 谷歌翻译
Graph neural networks have recently achieved great successes in predicting quantum mechanical properties of molecules. These models represent a molecule as a graph using only the distance between atoms (nodes). They do not, however, consider the spatial direction from one atom to another, despite directional information playing a central role in empirical potentials for molecules, e.g. in angular potentials. To alleviate this limitation we propose directional message passing, in which we embed the messages passed between atoms instead of the atoms themselves. Each message is associated with a direction in coordinate space. These directional message embeddings are rotationally equivariant since the associated directions rotate with the molecule. We propose a message passing scheme analogous to belief propagation, which uses the directional information by transforming messages based on the angle between them. Additionally, we use spherical Bessel functions and spherical harmonics to construct theoretically well-founded, orthogonal representations that achieve better performance than the currently prevalent Gaussian radial basis representations while using fewer than 1 /4 of the parameters. We leverage these innovations to construct the directional message passing neural network (DimeNet). DimeNet outperforms previous GNNs on average by 76 % on MD17 and by 31 % on QM9. Our implementation is available online. 1
translated by 谷歌翻译
偶极矩是一个物理量,指示分子的极性,并通过反映成分原子的电性能和分子的几何特性来确定。大多数用于表示传统图神经网络方法中图表表示的嵌入方式将分子视为拓扑图,从而为识别几何信息的目标造成了重大障碍。与现有的嵌入涉及均值的嵌入不同,该嵌入适当地处理分子的3D结构不同,我们的拟议嵌入直接表达了偶极矩局部贡献的物理意义。我们表明,即使对于具有扩展几何形状的分子并捕获更多的原子相互作用信息,开发的模型甚至可以合理地工作,从而显着改善了预测结果,准确性与AB-Initio计算相当。
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译
通过定向消息传递通过方向消息通过的图形神经网络最近在多个分子特性预测任务上设置了最先进的技术。然而,它们依赖于通常不可用的原子位置信息,并获得它通常非常昂贵甚至不可能。在本文中,我们提出了合成坐标,使得能够使用高级GNN而不需要真正的分子配置。我们提出了两个距离作为合成坐标:使用个性化PageRank的对称变体指定分子配置的粗糙范围和基于图的距离的距离界限。为了利用距离和角度信息,我们提出了一种将正常图形神经网络转换为定向MPNN的方法。我们表明,通过这种转变,我们可以将正常图形神经网络的误差减少55%在锌基准。我们还通过在SMP和DimeNet ++模型中纳入合成坐标,在锌和自由QM9上设定了最新技术。我们的实现可在线获取。
translated by 谷歌翻译
分子财产预测是药物和材料行业的基本任务。从物理上讲,分子的特性取决于其自身的电子结构,可以通过schr \“ odinger方程来精确描述。但是,由于大多数分子的求解schr \“ odinger”方程非常具有挑战性量子多体系统的行为。虽然已证明深度学习方法在分子性质预测中有效,但我们设计了一种新颖的方法,即GEM-2,它全面考虑了分子中的远距离和多体相互作用。 GEM-2由两个相互作用的轨道组成:一个原子级轨道模拟任意两个原子之间的局部和全局相关性,以及一个对所有原子对之间的相关性建模的成对轨道,它们嵌入任何3或4个原子之间的信息。广泛的实验证明了GEM-2在量子化学和药物发现任务中的多种基线方法的优越性。
translated by 谷歌翻译
3D相关的电感偏见,例如翻译不变性和旋转率偏差,对于在3D原子图(例如分子)上运行的图形神经网络是必不可少的。受到变压器在各个领域的成功的启发,我们研究了如何将这些电感偏置纳入变压器。在本文中,我们提出了Equibrouner,这是一个图形神经网络,利用了变压器体系结构的强度,并结合了基于不可减至表示(IRREPS)的$ SE(3)/e(3)$ - 均值功能。 IRREPS在通道尺寸中的编码均值信息而不使图形结构复杂化。简单性使我们能够通过用eproimiant对应物替换原始操作来直接合并它们。此外,为了更好地适应3D图,我们提出了一种新颖的模棱两可的图形注意力,该图都考虑了内容和几何信息,例如IRRERPS特征中包含的相对位置。为了提高注意力的表现力,我们用多层感知器的注意力取代了点产品的注意力,并包括非线性消息传递。我们在两个量子性能预测数据集(QM9和OC20)上进行基准测试。对于QM9,在接受相同数据分区训练的模型中,Equibourer在12个回归任务中的11个中取得了最佳结果。对于OC20,在使用IS2RE数据和IS2RS数据的培训设置下,Equibourer对最先进的模型进行了改进。复制所有主要结果的代码将很快获得。
translated by 谷歌翻译
3D空间中的空间结构对于确定分子特性是重要的。最近的论文使用几何深度学习来代表分子和预测性质。然而,这些论文在捕获输入原子的远程依赖性时在计算上昂贵;并且尚未考虑外部距离的不均匀性,因此未能学习不同尺度的上下文依赖表示。为了处理这些问题,我们引入了3D变压器,变压器的变型,用于结合3D空间信息的分子表示。 3D变压器在完全连接的图形上运行,在原子之间的直接连接。为了应对外部距离的不均匀性,我们开发了一种多尺度的自我关注模块,利用局部细粒度模式随着越来越多的上下文尺度来利用局部细粒度模式。由于不同尺寸的分子依赖于不同种类的空间特征,我们设计了一种自适应位置编码模块,用于针对小型和大分子采用不同的位置编码方法。最后,为了获得原子嵌入的分子表示,我们提出了一种殷勤最远的点采样算法,该算法在注意分数的帮助下选择一部分原子,克服虚拟节点的障碍和先前的距离 - 优势下采样方法。我们通过三个重要的科学域验证3D变压器:量子化学,物质科学和蛋白质组学。我们的实验表现出对晶体性能预测任务和蛋白质 - 配体结合亲和预测任务的最先进模型的显着改善,并且在量子化学分子数据集中显示了更好或更有竞争的性能。这项工作提供了明确的证据表明,生物化学任务可以从3D分子表示中获得一致的益处,不同的任务需要不同的位置编码方法。
translated by 谷歌翻译
Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach the limits of the approach. In this paper, we reformulate existing models into a single common framework we call Message Passing Neural Networks (MPNNs) and explore additional novel variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we believe future work should focus on datasets with larger molecules or more accurate ground truth labels.Recently, large scale quantum chemistry calculation and molecular dynamics simulations coupled with advances in high throughput experiments have begun to generate data at an unprecedented rate. Most classical techniques do not make effective use of the larger amounts of data that are now available. The time is ripe to apply more powerful and flexible machine learning methods to these problems, assuming we can find models with suitable inductive biases. The symmetries of atomic systems suggest neural networks that operate on graph structured data and are invariant to graph isomorphism might also be appropriate for molecules. Sufficiently successful models could someday help automate challenging chemical search problems in drug discovery or materials science.In this paper, our goal is to demonstrate effective machine learning models for chemical prediction problems
translated by 谷歌翻译
我们考虑在编码晶体材料的周期图上的表示形式学习。与常规图不同,周期图由最小单位单元组成,该单元在3D空间中的常规晶格上重复出现。如何有效编码这些周期结构会带来常规图表学习中不存在的独特挑战。除了E(3)不变外,周期性的图表表示还需要定期不变。也就是说,学到的表示形式应该不变,因为它们是人为强加的。此外,需要明确捕获周期性重复模式,因为不同尺寸和方向的晶格可能对应于不同的材料。在这项工作中,我们提出了一个变压器体系结构,称为Matformer,以进行周期性图表学习。我们的拟合器设计为周期性不变,可以明确捕获重复模式。特别是,Matformer通过有效使用相邻细胞中相同原子之间的几何距离来编码周期模式。多个通用基准数据集的实验结果表明,我们的配合器的表现始终超过基线方法。此外,我们的结果证明了定期不变性和对晶体表示学习的明确重复模式编码的重要性。
translated by 谷歌翻译
近年来,分子模拟数据集的出现是大数量级,更多样化的阶。这些新数据集在复杂性的四个方面有很大差异:1。化学多样性(不同元素的数量),2。系统大小(每个样品原子数),3。数据集大小(数据样本数)和4.域移动(培训和测试集的相似性)。尽管存在这些较大的差异,但在狭窄和狭窄的数据集上的基准仍然是证明分子模拟的图形神经网络(GNN)进展的主要方法,这可能是由于较便宜的训练计算要求所致。这就提出了一个问题 - GNN在小和狭窄的数据集上的进展是否转化为这些更复杂的数据集?这项工作通过首先根据大型开放催化剂2020(OC20)数据集开发Gemnet-OC模型来研究这个问题。 Gemnet-OC的表现优于OC20上的先前最新ART,同时将训练时间减少10倍。然后,我们比较了18个模型组件和超参数选择对多个数据集的性能的影响。我们发现,根据用于做出模型选择的数据集,所得模型将大不相同。为了隔离这种差异的来源,我们研究了OC20数据集的六个子集,这些子集分别测试了上述四个数据集方面的每个数据集。我们发现,OC-2M子集的结果与完整的OC20数据集良好相关,同时训练得更便宜。我们的发现挑战了仅在小型数据集上开发GNN的常见做法,但突出了通过中等尺寸的代表性数据集(例如OC-2M)以及Gemnet-oc等高效模型来实现快速开发周期和可推广结果的方法。我们的代码和预估计的模型权重是开源的。
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
变压器架构已成为许多域中的主导选择,例如自然语言处理和计算机视觉。然而,与主流GNN变体相比,它对图形水平预测的流行排行榜没有竞争表现。因此,它仍然是一个谜,变形金机如何对图形表示学习表现良好。在本文中,我们通过提出了基于标准变压器架构构建的Gragemer来解决这一神秘性,并且可以在广泛的图形表示学习任务中获得优异的结果,特别是在最近的OGB大规模挑战上。我们在图中利用变压器的关键洞察是有效地将图形的结构信息有效地编码到模型中。为此,我们提出了几种简单但有效的结构编码方法,以帮助Gramemormer更好的模型图形结构数据。此外,我们在数学上表征了Gramemormer的表现力,并展示了我们编码图形结构信息的方式,许多流行的GNN变体都可以被涵盖为GrameRormer的特殊情况。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译
图形神经网络(GNN)正在化学工程中出现,以基于分子图的物理化学特性端到端学习。 GNNS的一个关键要素是合并函数,将原子矢量结合到分子指纹中。大多数以前的作品都使用标准池功能来预测各种属性。但是,不合适的合并功能会导致概括不佳的非物理GNN。我们根据有关学习特性的物理知识比较并选择有意义的GNN合并方法。通过量子机械计算计算出的分子特性证明了物理池函数的影响。我们还将结果与最近的SET2Set合并方法进行了比较。我们建议使用总和池来预测取决于分子大小的性能并比较分子大小无关的属性的池函数。总体而言,我们表明物理池功能的使用显着增强了概括。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
In recent years, molecular graph representation learning (GRL) has drawn much more attention in molecular property prediction (MPP) problems. The existing graph methods have demonstrated that 3D geometric information is significant for better performance in MPP. However, accurate 3D structures are often costly and time-consuming to obtain, limiting the large-scale application of GRL. It is an intuitive solution to train with 3D to 2D knowledge distillation and predict with only 2D inputs. But some challenging problems remain open for 3D to 2D distillation. One is that the 3D view is quite distinct from the 2D view, and the other is that the gradient magnitudes of atoms in distillation are discrepant and unstable due to the variable molecular size. To address these challenging problems, we exclusively propose a distillation framework that contains global molecular distillation and local atom distillation. We also provide a theoretical insight to justify how to coordinate atom and molecular information, which tackles the drawback of variable molecular size for atom information distillation. Experimental results on two popular molecular datasets demonstrate that our proposed model achieves superior performance over other methods. Specifically, on the largest MPP dataset PCQM4Mv2 served as an "ImageNet Large Scale Visual Recognition Challenge" in the field of graph ML, the proposed method achieved a 6.9% improvement compared with the best works. And we obtained fourth place with the MAE of 0.0734 on the test-challenge set for OGB-LSC 2022 Graph Regression Task. We will release the code soon.
translated by 谷歌翻译
建模分子势能表面在科学中至关重要。图神经网络在该领域表现出了巨大的成功,尤其是那些使用旋转等级表示的人。但是,他们要么患有复杂的数学形式,要么缺乏理论支持和设计原则。为了避免使用模棱两可的表示,我们引入了一种新型的本地框架方法来分子表示学习并分析其表现力。借助框架上的框架和模棱两可的向量的投影,GNN可以将原子的局部环境映射到标量表示。也可以在框架上投影在本地环境中传递消息。我们进一步分析了何时以及如何构建此类本地框架。我们证明,当局部环境没有对称性时,局部框架总是存在的,就像分子动力学模拟中一样。对于对称分子,尽管只能构建退化框架,但我们发现,由于自由度降低,在某些常见情况下,局部框架方法仍可能达到高表达能力。仅使用标量表示,我们可以采用现有的简单和强大的GNN体系结构。我们的模型在实验中的表现优于一系列最先进的基线。更简单的体系结构也可以提高更高的可扩展性。与最快的基线相比,我们的模型仅需30%的推理时间。
translated by 谷歌翻译
This technical report presents GPS++, the first-place solution to the Open Graph Benchmark Large-Scale Challenge (OGB-LSC 2022) for the PCQM4Mv2 molecular property prediction task. Our approach implements several key principles from the prior literature. At its core our GPS++ method is a hybrid MPNN/Transformer model that incorporates 3D atom positions and an auxiliary denoising task. The effectiveness of GPS++ is demonstrated by achieving 0.0719 mean absolute error on the independent test-challenge PCQM4Mv2 split. Thanks to Graphcore IPU acceleration, GPS++ scales to deep architectures (16 layers), training at 3 minutes per epoch, and large ensemble (112 models), completing the final predictions in 1 hour 32 minutes, well under the 4 hour inference budget allocated. Our implementation is publicly available at: https://github.com/graphcore/ogb-lsc-pcqm4mv2.
translated by 谷歌翻译