这项工作提出了一种新的循环架构,可以从图像中提取高频模式并将其重新插入几何特征。此过程允许我们增强一方面捕获精细细节的低成本深度传感器的分辨率,并忠于另一方面的扫描地面真相。我们为深度超分辨率任务以及视觉上有吸引力,增强的3D模型提供了最先进的结果。
translated by 谷歌翻译
用商品传感器捕获的深度图通常具有低质量和分辨率;这些地图需要增强以在许多应用中使用。深度图超分辨率的最新数据驱动方法依赖于同一场景的低分辨率和高分辨率深度图的注册对。采集现实世界配对数据需要专门的设置。另一个替代方法是通过亚采样,添加噪声和其他人工降解方法从高分辨率地图中生成低分辨率地图,并不能完全捕获现实世界中低分辨率图像的特征。结果,对这种人造配对数据训练的监督学习方法可能在现实世界中的低分辨率输入上表现不佳。我们考虑了一种基于从未配对数据学习的深度超分辨率的方法。尽管已经提出了许多用于未配对图像到图像翻译的技术,但大多数技术无法使用深度图提供有效的孔填充或重建精确表面。我们提出了一种未配对的学习方法,用于深度超分辨率,该方法基于可学习的降解模型,增强成分和表面正常估计作为特征,以产生更准确的深度图。我们为未配对的深度SR提出了一个基准测试,并证明我们的方法的表现优于现有的未配对方法,并与配对相当。
translated by 谷歌翻译
引导深度超分辨率(GDSR)是多模态图像处理中的必要主题,其在同一场景的HR RGB图像的帮助下重建与次优条件的低分辨率的高分辨率(HR)深度映射。为了解决解释工作机制的挑战,提取过度转移的跨模型特征和RGB纹理,我们提出了一种新颖的离散余弦变换网络(DCTNet)来缓解三个方面的问题。首先,离散余弦变换(DCT)模块通过使用DCT来解决来自GDSR的图像域的频道明智的优化问题来重建多通道HR深度特征。其次,我们介绍了一个半耦合特征提取模块,使用共享卷积核,以提取公共功能和私有内核,以提取特定的模态特征。第三,我们采用了边缘注意机制,以突出导致导游的轮廓。广泛的定量和定性评估表明了我们的DCTNET的有效性,这优于以前的最先进方法,具有相对较少的参数。代码将公开。
translated by 谷歌翻译
深度映射记录场景中的视点和对象之间的距离,这在许多真实应用程序中起着关键作用。然而,消费者级RGB-D相机捕获的深度图遭受了低空间分辨率。引导深度地图超分辨率(DSR)是解决此问题的流行方法,该方法试图从输入的低分辨率(LR)深度及其耦合的HR RGB图像中恢复高分辨率(HR)深度映射和作为指引。引导DSR最具挑战性的问题是如何正确选择一致的结构并传播它们,并正确处理不一致的结构。在本文中,我们提出了一种用于引导DSR的新型关注的分层多模态融合(AHMF)网络。具体地,为了有效地提取和组合来自LR深度和HR引导的相关信息,我们提出了一种基于多模态注意力的融合(MMAF)策略,包括分层卷积层,包括特征增强块,以选择有价值的功能和特征重新校准块来统一不同外观特征的方式的相似性度量。此外,我们提出了一个双向分层特征协作(BHFC)模块,以完全利用多尺度特征之间的低级空间信息和高级结构信息。实验结果表明,在重建精度,运行速度和记忆效率方面,我们的方法优于最先进的方法。
translated by 谷歌翻译
Depth map super-resolution (DSR) has been a fundamental task for 3D computer vision. While arbitrary scale DSR is a more realistic setting in this scenario, previous approaches predominantly suffer from the issue of inefficient real-numbered scale upsampling. To explicitly address this issue, we propose a novel continuous depth representation for DSR. The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding, through which the geometric information is explicitly introduced into feature aggregation and target generation. Furthermore, bricking with GSA, we present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates and the high-resolution output results, empowering our model with the advantage of arbitrary shape transformation ready to help diverse zooming demand. Extensive experimental results on standard depth map benchmarks, e.g., NYU v2, have demonstrated that the proposed framework achieves significant restoration gain in arbitrary scale depth map super-resolution compared with the prior art. Our codes are available at https://github.com/nana01219/GeoDSR.
translated by 谷歌翻译
Monocular depth estimation is a challenging problem on which deep neural networks have demonstrated great potential. However, depth maps predicted by existing deep models usually lack fine-grained details due to the convolution operations and the down-samplings in networks. We find that increasing input resolution is helpful to preserve more local details while the estimation at low resolution is more accurate globally. Therefore, we propose a novel depth map fusion module to combine the advantages of estimations with multi-resolution inputs. Instead of merging the low- and high-resolution estimations equally, we adopt the core idea of Poisson fusion, trying to implant the gradient domain of high-resolution depth into the low-resolution depth. While classic Poisson fusion requires a fusion mask as supervision, we propose a self-supervised framework based on guided image filtering. We demonstrate that this gradient-based composition performs much better at noisy immunity, compared with the state-of-the-art depth map fusion method. Our lightweight depth fusion is one-shot and runs in real-time, making our method 80X faster than a state-of-the-art depth fusion method. Quantitative evaluations demonstrate that the proposed method can be integrated into many fully convolutional monocular depth estimation backbones with a significant performance boost, leading to state-of-the-art results of detail enhancement on depth maps.
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
尽管在过去几年中取得了重大进展,但使用单眼图像进行深度估计仍然存在挑战。首先,训练度量深度预测模型的训练是不算气的,该预测模型可以很好地推广到主要由于训练数据有限的不同场景。因此,研究人员建立了大规模的相对深度数据集,这些数据集更容易收集。但是,由于使用相对深度数据训练引起的深度转移,现有的相对深度估计模型通常无法恢复准确的3D场景形状。我们在此处解决此问题,并尝试通过对大规模相对深度数据进行训练并估算深度转移来估计现场形状。为此,我们提出了一个两阶段的框架,该框架首先将深度预测到未知量表并从单眼图像转移,然后利用3D点云数据来预测深度​​移位和相机的焦距,使我们能够恢复恢复3D场景形状。由于两个模块是单独训练的,因此我们不需要严格配对的培训数据。此外,我们提出了图像级的归一化回归损失和基于正常的几何损失,以通过相对深度注释来改善训练。我们在九个看不见的数据集上测试我们的深度模型,并在零拍摄评估上实现最先进的性能。代码可用:https://git.io/depth
translated by 谷歌翻译
引导过滤器是计算机视觉和计算机图形中的基本工具,旨在将结构信息从引导图像传输到目标图像。大多数现有方法构造来自指导本身的滤波器内核,而不考虑指导和目标之间的相互依赖性。然而,由于两种图像中通常存在显着不同的边沿,只需将引导的所有结构信息传送到目标即将导致各种伪像。要应对这个问题,我们提出了一个名为Deep Enterponal引导图像过滤的有效框架,其过滤过程可以完全集成两个图像中包含的互补信息。具体地,我们提出了一种注意力内核学习模块,分别从引导和目标生成双组滤波器内核,然后通过在两个图像之间建模像素方向依赖性来自适应地组合它们。同时,我们提出了一种多尺度引导图像滤波模块,以粗略的方式通过所构造的内核逐渐产生滤波结果。相应地,引入了多尺度融合策略以重用中间导点在粗略的过程中。广泛的实验表明,所提出的框架在广泛的引导图像滤波应用中,诸如引导超分辨率,横向模态恢复,纹理拆除和语义分割的最先进的方法。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
我们提出了一个新颖的框架,以从单个低分辨率输入图像中重建超分辨率的人形。该方法克服了从单个图像中重建3D人类形状的现有方法的局限性,该方法需要高分辨率图像以及辅助数据(例如表面正常或参数模型)以重建高尾巴形状。所提出的框架代表具有高确定隐式函数的重建形状。该方法类似于2D图像超分辨率的目标,它从低分辨率形状到其高分辨率对应物中学习了映射,并应用于从低分辨率图像中重建3D形状细节。该方法是经过训练的端到端,采用了新的损失函数,该功能估计了相同3D表面形状的低分辨率和高分辨率表示之间丢失的信息。对衣服人员进行单图像重建的评估表明,我们的方法从没有辅助数据的低分辨率图像中实现了高确定的表面重建。广泛的实验表明,所提出的方法可以估计超分辨率的人几何形状,其细节水平明显高于使用在低分辨率图像上使用的方法。
translated by 谷歌翻译
间接飞行时间(I-TOF)成像是由于其小尺寸和价格合理的价格导致移动设备的深度估计方式。以前的作品主要专注于I-TOF成像的质量改进,特别是固化多路径干扰(MPI)的效果。这些调查通常在特定约束的场景中进行,在近距离,室内和小环境光下。令人惊讶的一点工作已经调查了现实生活场景的I-TOF质量改善,其中强烈的环境光线和远距离由于具有限制传感器功率和光散射而导致的诱导射击噪声和信号稀疏引起的困难。在这项工作中,我们提出了一种基于新的学习的端到端深度预测网络,其噪声原始I-TOF信号以及RGB图像基于涉及隐式和显式对齐的多步方法来解决它们的潜在表示。预测与RGB视点对齐的高质量远程深度图。与基线方法相比,我们在挑战真实世界场景中测试了挑战性质场景的方法,并在最终深度地图上显示了超过40%的RMSE改进。
translated by 谷歌翻译
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. The performance of existing methods is still limited, as they produce either blurry results on plain textured areas or distortions around depth discontinuous boundaries. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation, while the other module warps another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations adaptively via the learned attention maps, leading to the final high-resolution LF image with satisfactory results on both plain textured areas and depth discontinuous boundaries. Besides, to promote the effectiveness of our method trained with simulated hybrid data on real hybrid data captured by a hybrid LF imaging system, we carefully design the network architecture and the training strategy. Extensive experiments on both real and simulated hybrid data demonstrate the significant superiority of our approach over state-of-the-art ones. To the best of our knowledge, this is the first end-to-end deep learning method for LF reconstruction from a real hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
translated by 谷歌翻译
最新的多视图多媒体应用程序在高分辨率(HR)视觉体验与存储或带宽约束之间挣扎。因此,本文提出了一个多视图图像超分辨率(MVISR)任务。它旨在增加从同一场景捕获的多视图图像的分辨率。一种解决方案是将图像或视频超分辨率(SR)方法应用于低分辨率(LR)输入视图结果。但是,这些方法无法处理视图之间的大角度转换,并利用所有多视图图像中的信息。为了解决这些问题,我们提出了MVSRNET,该MVSRNET使用几何信息从所有LR多视图中提取尖锐的细节,以支持LR输入视图的SR。具体而言,MVSRNET中提出的几何感知参考合成模块使用几何信息和所有多视图LR图像来合成像素对齐的HR参考图像。然后,提出的动态高频搜索网络完全利用了SR参考图像中的高频纹理细节。关于几个基准测试的广泛实验表明,我们的方法在最新方法上有了显着改善。
translated by 谷歌翻译
使用商品传感器捕获的深度映射通常需要在应用中使用超分辨率。在这项工作中,我们研究了一种基于与Tikhonov正规的变分问题陈述的超分辨率方法,其中规范器与深神经网络参数化。这种方法以前在光声断层扫描中成功应用。我们通过实验表明它在深度地图超级分辨率的应用很困难,并提供关于该原因的建议。
translated by 谷歌翻译
场景理解是一个活跃的研究区域。商业深度传感器(如Kinect)在过去几年中启用了几个RGB-D数据集的发布,它在3D场景理解中产生了新的方法。最近,在Apple的iPad和iPhone中推出LIDAR传感器,可以在他们通常使用的设备上访问高质量的RGB-D数据。这在对计算机视觉社区以及应用程序开发人员来说,这是一个全新的时代。现场理解的基本研究与机器学习的进步一起可以影响人们的日常经历。然而,将这些现场改变为现实世界经验的理解方法需要额外的创新和发展。在本文中,我们介绍了Arkitscenes。它不仅是具有现在广泛可用深度传感器的第一个RGB-D数据集,而且是我们最好的知识,它也是了解数据发布的最大的室内场景。除了来自移动设备的原始和处理的数据之外,Arkitscenes还包括使用固定激光扫描仪捕获的高分辨率深度图,以及手动标记为家具的大型分类的3D定向边界盒。我们进一步分析了两个下游任务数据的有用性:3D对象检测和色彩引导深度上采样。我们展示了我们的数据集可以帮助推动现有最先进的方法的边界,并引入了更好代表真实情景的新挑战。
translated by 谷歌翻译
在本文中,我们的目标是在各种照明条件下解决复杂场景中一致的深度预测问题。现有的基于RGB-D传感器或虚拟渲染的室内数据集具有两个关键限制 - 稀疏深度映射(NYU深度V2)和非现实照明(Sun CG,SceneNet RGB-D)。我们建议使用Internet 3D室内场景并手动调整其照明,以呈现照片逼真的RGB照片及其相应的深度和BRDF地图,获取名为Vari DataSet的新室内深度数据集。通过在编码特征上应用深度可分离扩张的卷积来处理全局信息并减少参数,提出了一个名为DCA的简单卷积块。我们对这些扩张的特征进行横向关注,以保留不同照明下深度预测的一致性。通过将其与Vari数据集上的当前最先进的方法进行比较来评估我们的方法,并且在我们的实验中观察到显着改善。我们还开展了融合研究,Finetune我们的NYU深度V2模型,并评估了真实数据,以进一步验证我们的DCA块的有效性。代码,预先训练的权重和vari数据集是开放的。
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
轻巧的飞行时间(TOF)深度传感器很小,便宜,低能量,并且已在移动设备上大量部署在移动设备上,以进行自动对焦,障碍物检测等。但是,由于其特定的测量值(深度分布)在某个像素时的区域而不是深度值,并且分辨率极低,它们不足以用于需要高保真深度(例如3D重建)的应用。在本文中,我们提出了Deltar,这是一种新颖的方法,可以通过与颜色图像合作来赋予高分辨率和准确深度的能力。作为Deltar的核心,提出了一种用于深度分布的特征提取器,并提出了基于注意力的神经体系结构,以有效地从颜色和TOF域中融合信息。为了在现实世界中评估我们的系统,我们设计了一个数据收集设备,并提出了一种校准RGB摄像头和TOF传感器的新方法。实验表明,我们的方法比旨在使用商品级RGB-D传感器的PAR性能实现的现有框架比现有的框架产生更准确的深度。代码和数据可在https://zju3dv.github.io/deltar/上获得。
translated by 谷歌翻译